Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Sep 25 2023 08:15:54
%S 130,195,222,292,498,582,670,814,970,1362,1398,1534,1645,1813,1834,
%T 1978,2514,2717,2853,2865,2994,3092,3130,3157,3211,3462,3897,4527,
%U 4615,4707,4782,5529,6070,6610,7270,7399,7414,7527,7767,8029,8305,8687,8911,9994,10330,10390,11297,11557,11619,11679
%N Triprimes a such that, if b is the next triprime, a + b and b - a are also triprimes.
%C It appears that in most cases b - a = 8.
%H Robert Israel, <a href="/A365833/b365833.txt">Table of n, a(n) for n = 1..10000</a>
%e a(3) = 222 ix a term because 222 = 2*3*37 is a triprime, the next triprime is 230 = 2 5 * 23, and 222 + 230 = 452 = 2^2 * 113 and 230 - 222 = 8 = 2^3 are triprimes.
%p with(priqueue);
%p a:= 8: R:= NULL: count:= 0:
%p initialize(triprimes);
%p insert([-8,0,2],triprimes);
%p while count < 50 do
%p v:= extract(triprimes);
%p if v[2] = 3 then
%p b:= -v[1];
%p if numtheory:-bigomega(b-a) = 3 and numtheory:-bigomega(b+a)=3 then
%p R:= R, a; count:= count+1
%p fi;
%p a:= b;
%p else
%p insert(v+[0,1,0],triprimes);
%p q:= nextprime(v[3]);
%p w:= v[1]*(q/v[3])^(3-v[2]);
%p insert([w,v[2],q],triprimes)
%p fi
%p od:
%p R;
%t Select[Partition[Select[Range[12000], PrimeOmega[#] == 3 &], 2, 1], AllTrue[{#1 + #2, #2 - #1}, PrimeOmega[#] == 3 &] & @@ # &][[All, 1]] (* _Michael De Vlieger_, Sep 20 2023 *)
%Y Cf. A014612.
%K nonn
%O 1,1
%A _Zak Seidov_ and _Robert Israel_, Sep 19 2023