

A067742


Number of middle divisors of n, i.e., divisors in the halfopen interval [sqrt(n/2), sqrt(n*2)).


59



1, 1, 0, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 0, 2, 1, 0, 1, 0, 2, 0, 0, 0, 2, 1, 0, 0, 2, 0, 2, 0, 1, 0, 0, 2, 1, 0, 0, 0, 2, 0, 2, 0, 0, 2, 0, 0, 2, 1, 1, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 2, 1, 0, 2, 0, 0, 0, 2, 0, 3, 0, 0, 0, 0, 2, 0, 0, 2, 1, 0, 0, 2, 0, 0, 0, 2, 0, 2, 2, 0, 0, 0, 0, 2, 0, 1, 2, 1, 0, 0, 0, 2, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,6


COMMENTS

Comment from N. J. A. Sloane, Jan 03 2021: (Start)
Theorem 1: (i) a(n) = (number of odd divisors of n <= sqrt(2*n))  (number of odd divisors of n > sqrt(2*n)).
(ii) Let r(n) = A003056(n). Then a(n) = (number of odd divisors of n <= r(n))  (number of odd divisors of n > r(n)).
(iii) a(n) = Sum_{k=1..r(n)} (1)^(k+1)*A237048(n,k).
(iv) a(n) is odd iff n is a square or twice a square (cf. A053866). Indices of odd terms give A028982. Indices of even terms give A028983.
The proofs are straightforward. These results were conjectured by Omar E. Pol in 2017. (End)
Theorem 2: a(n) is equal to the difference between the number of partitions of n into an odd number of consecutive parts and the number of partitions of n into an even number of consecutive parts. [Chapman et al., 2001; Hirschhorn and Hirschhorn, 2005].  Omar E. Pol, Feb 06 2017
From Omar E. Pol, Feb 06 2017: (Start)
Conjecture 1: This is the central column of the isosceles triangle of A249351.
Conjecture 2: a(n) is also the width of the terrace at the nth level in the main diagonal of the pyramid described in A245092.
Conjecture 3: a(n) is also the number of central subparts of the symmetric representation of sigma(n). For more information see A279387.
Conjectures 2 and 3 were proposed after Michel Marcus's conjecture in A237593. (End)
Conjectures 1, 2, and 3 are all true.  N. J. A. Sloane, Feb 11 2021


REFERENCES

Robin Chapman, Kimmo Eriksson and Richard Stanley, On the Number of Divisors of n in a Special Interval: Problem 10847, Amer. Math. Monthly 108:1 (Jan 2001), p. 77 (Proposal); 109:1 (Jan 2002), p. 80 (Solution). [Please do not delete this reference.  N. J. A. Sloane, Dec 16 2020]


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Robin Chapman, Kimmo Eriksson and Richard Stanley, On the Number of Divisors of n in a Special Interval: Problem 10847, Amer. Math. Monthly 108, (2001), p. 77; solution by Reiner Martin, Amer. Math. Monthly 109, (2002), p. 80.
M. D. Hirschhorn and P. M. Hirschhorn, Partitions into Consecutive Parts, Mathematics Magazine 78.5 (2005): 396396.
Christian Kassel and Christophe Reutenauer, The zeta function of the Hilbert scheme of n points on a twodimensional torus, arXiv:1505.07229v3 [math.AG], 2015, see page 29 Remarks 6.8(b). [Note that a later version of this paper has a different title and different contents, and the numbertheoretical part of the paper was moved to the publication which is next in this list.]
Christian Kassel and Christophe Reutenauer, Complete determination of the zeta function of the Hilbert scheme of n points on a twodimensional torus, arXiv:1610.07793 [math.NT], 2016, see Remark 1.3.
Omar E. Pol, Illustration of initial terms obtained geometrically
J. E. Vatne, The sequence of middle divisors is unbounded, arXiv:1607.02122 [math.NT], 2016, shows that there is a subsequence diverging to infinity.


FORMULA

G.f.: Sum_{k>=1} (1)^(k1)*x^(k*(k+1)/2)/(1x^k). (This g.f. corresponds to the assertion in Theorem 2.)
Another g.f., corresponding to the definition: Sum_{k>=1} x^(2*k*(k+1))*(1x^(6*k^2))/(1x^(2*k)) + Sum_{k>=0} x^((k+1)*(2*k+1))*(1x^((2*k+1)*(3*k+2))/(1x^(2*k+1).  N. J. A. Sloane, Jan 04 2021
a(A128605(n)) = n and a(m) <> n for m < A128605(n).  Reinhard Zumkeller, Mar 14 2007
It appears that a(n) = A240542(n)  A240542(n1), the difference between two adjacent Dyck paths as defined in A237593.  Hartmut F. W. Hoft, Feb 06 2017
The above conjecture is essentially the same as Michel Marcus's conjecture in A237593.  Omar E. Pol, Dec 20 2020
Conjecture: a(n) = A082647(n)  A131576(n) = A001227(n)  2*A131576(n).  Omar E. Pol, Feb 06 2017
a(n) = A348406(n)  1.  Omar E. Pol, Oct 29 2021
a(n) = A000005(n)  A067743(n).  Omar E. Pol, Jun 11 2022


EXAMPLE

a(6)=2 because the 2 middle divisors of 6 (2 and 3) are between sqrt(3) and sqrt(12).


MATHEMATICA

(* number of middle divisors *)
a067742[n_] := Select[Divisors[n], Sqrt[n/2] <= # < Sqrt[2n] &]
a067742[115] (* data *)
(* Hartmut F. W. Hoft, Jul 17 2014 *)
a[ n_] := If[ n < 1, 0, DivisorSum[ n, 1 &, n/2 <= #^2 < 2 n &]]; (* Michael Somos, Jun 04 2015 *)
(* support function a240542[] is defined in A240542 *)
b[n_] := a240542[n]  a240542[n1]
Map[b, Range[105]] (* data  Hartmut F. W. Hoft, Feb 06 2017 *)


PROG

(PARI) A067742(n) = {sumdiv(n, d, d2 = d^2; n / 2 < d2 && d2 <= n << 1)} \\ M. F. Hasler, May 12 2008
(PARI) a(n) = A067742(n) = {my(d = divisors(n), iu = il = #d \ 2); if(#d <= 2, return(n < 3)); while(d[il]^2 > n>>1, il); while(d[iu]^2 < (n<<1), iu++);
iu  il  1 + issquare(n/2)} \\ David A. Corneth, Apr 06 2018
(Python)
from sympy import divisors
def A067742(n): return sum(1 for d in divisors(n, generator=True) if n <= 2*d**2 < 4*n) # Chai Wah Wu, Jun 09 2022


CROSSREFS

Cf. A001227, A003056, A028982, A028983, A053866, A067743, A071090 (sums of middle divisors), A082647, A128605, A131576.
Cf. also A071561 (positions of zeros), A071562 (positions of nonzeros), A299761 (middle divisors of n), A355143 (products of middle divisors).
Relation to Dyck paths: A237048, A237593, A240542 (partial sums), A245092, A249351, A279387, A348406.
Sequence in context: A129561 A259895 A276479 * A302233 A214772 A332036
Adjacent sequences: A067739 A067740 A067741 * A067743 A067744 A067745


KEYWORD

easy,nonn


AUTHOR

Marc LeBrun, Jan 29 2002


EXTENSIONS

Edited by N. J. A. Sloane, Jan 03 2021


STATUS

approved



