login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259895
Expansion of psi(x^2) * psi(x^3) in powers of x where psi() is a Ramanujan theta function.
6
1, 0, 1, 1, 0, 1, 1, 0, 0, 2, 0, 1, 1, 0, 0, 2, 0, 0, 1, 0, 2, 1, 0, 1, 1, 0, 0, 0, 0, 1, 3, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 2, 0, 0, 2, 0, 1, 1, 0, 1, 2, 0, 0, 0, 0, 1, 1, 0, 1, 2, 0, 0, 1, 0, 3, 0, 0, 0, 1, 0, 0, 2, 0, 1, 3, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 2
OFFSET
0,10
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-5/8) * eta(q^4)^2 * eta(q^6)^2 / (eta(q^2) * eta(q^3)) in powers of q.
Euler transform of period 12 sequence [ 0, 1, 1, -1, 0, 0, 0, -1, 1, 1, 0, -2, ...].
a(n) = A259896(3*n + 1). a(3*n) = A128583(n). a(3*n + 1) = a(9*n + 8) = 0.
2 * a(n) = A129402(4*n + 2) = A190615(4*n + 2) = A000377(8*n + 5) = A192013(8*n + 5). - Michael Somos, Jul 22 2015
-2 * a(n) = A259668(2*n + 1) = A128580(4*n + 2) = A134177(4*n + 2) = A257921(6*n + 3). - Michael Somos, Jul 22 2015
a(3*n + 2) = A259896(n). - Michael Somos, Jul 22 2015
EXAMPLE
G.f. = 1 + x^2 + x^3 + x^5 + x^6 + 2*x^9 + x^11 + x^12 + 2*x^15 + x^18 + ...
G.f. = q^5 + q^21 + q^29 + q^45 + q^53 + 2*q^77 + q^93 + q^101 + 2*q^125 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x] EllipticTheta[ 2, 0, x^(3/2)] / (4 q^(5/8)), {x, 0, n}];
a[ n_] := If[ n < 0, 0, 1/2 Sum[ KroneckerSymbol[ -6, d], {d, Divisors[8 n + 5]}]]; (* Michael Somos, Jul 22 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^2 * eta(x^6 + A)^2 / (eta(x^2 + A) * eta(x^3 + A)), n))};
(PARI) {a(n) = if( n<0, 0, 1/2 * sumdiv( 8*n + 5, d, kronecker( -6, d)))};
KEYWORD
nonn
AUTHOR
Michael Somos, Jul 07 2015
STATUS
approved