OFFSET
1,18
COMMENTS
Here 0.d means the decimal fraction obtained by writing d after the decimal point, e.g. 0.12 = 12/100 = 3/25.
The first few values of Sum_{d|n} 0.d are: 1/10, 3/10, 2/5, 7/10, 3/5, 6/5, 4/5, 3/2, 13/10, 9/10, 21/100, 43/25, ...
See A276480(n) = the smallest number k such that floor(Sum_{d|k} 0.d) = n.
LINKS
Jaroslav Krizek, Table of n, a(n) for n = 1..1000
EXAMPLE
For n=12: a(12) = floor(Sum_{d|12} 0.d) = floor(0.1 + 0.2 + 0.3 + 0.4 + 0.6 + 0.12 = 0.72) = floor(172/100) = floor(43/25) = 1.
MATHEMATICA
Table[Floor@ Total@ (#*1/10^(1 + Floor@ Log10@ #)) &@ Divisors@ n, {n, 120}] (* Michael De Vlieger, Sep 06 2016 *)
PROG
(Magma) [Floor(&+[d / (10^(#Intseq(d))): d in Divisors(n)]): n in [1..1000]]
(PARI) a(n) = floor(sumdiv(n, d, d/10^(#Str(d)))); \\ Michel Marcus, Sep 05 2016
(Python 3)
from fractions import Fraction
from sympy import divisors
def A276479(n):
return sum(Fraction(d, 10**len(str(d))) for d in divisors(n)).__floor__() # Chai Wah Wu, Sep 08 2016
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Jaroslav Krizek, Sep 05 2016
STATUS
approved