login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276479
a(n) = floor(Sum_{d|n} 0.d).
2
0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 0, 1, 1, 0, 2, 0, 1, 0, 0, 1, 3, 0, 0, 0, 2, 0, 2, 0, 1, 2, 0, 0, 3, 1, 1, 1, 1, 0, 3, 1, 3, 1, 1, 0, 3, 0, 1, 2, 2, 1, 2, 0, 1, 1, 2, 0, 4, 0, 1, 2, 2, 1, 2, 0, 3, 2, 1, 0, 4, 1, 1, 1
OFFSET
1,18
COMMENTS
Here 0.d means the decimal fraction obtained by writing d after the decimal point, e.g. 0.12 = 12/100 = 3/25.
The first few values of Sum_{d|n} 0.d are: 1/10, 3/10, 2/5, 7/10, 3/5, 6/5, 4/5, 3/2, 13/10, 9/10, 21/100, 43/25, ...
See A276480(n) = the smallest number k such that floor(Sum_{d|k} 0.d) = n.
LINKS
FORMULA
a(n) = floor(A276466(n)/A276467(n)).
EXAMPLE
For n=12: a(12) = floor(Sum_{d|12} 0.d) = floor(0.1 + 0.2 + 0.3 + 0.4 + 0.6 + 0.12 = 0.72) = floor(172/100) = floor(43/25) = 1.
MATHEMATICA
Table[Floor@ Total@ (#*1/10^(1 + Floor@ Log10@ #)) &@ Divisors@ n, {n, 120}] (* Michael De Vlieger, Sep 06 2016 *)
PROG
(Magma) [Floor(&+[d / (10^(#Intseq(d))): d in Divisors(n)]): n in [1..1000]]
(PARI) a(n) = floor(sumdiv(n, d, d/10^(#Str(d)))); \\ Michel Marcus, Sep 05 2016
(Python 3)
from fractions import Fraction
from sympy import divisors
def A276479(n):
return sum(Fraction(d, 10**len(str(d))) for d in divisors(n)).__floor__() # Chai Wah Wu, Sep 08 2016
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Jaroslav Krizek, Sep 05 2016
STATUS
approved