Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Sep 08 2022 08:46:17
%S 0,0,0,0,0,1,0,1,1,0,0,1,0,1,1,1,0,2,0,1,1,0,0,2,0,0,1,1,0,2,0,1,0,0,
%T 1,3,0,0,0,2,0,2,0,1,2,0,0,3,1,1,1,1,0,3,1,3,1,1,0,3,0,1,2,2,1,2,0,1,
%U 1,2,0,4,0,1,2,2,1,2,0,3,2,1,0,4,1,1,1
%N a(n) = floor(Sum_{d|n} 0.d).
%C Here 0.d means the decimal fraction obtained by writing d after the decimal point, e.g. 0.12 = 12/100 = 3/25.
%C The first few values of Sum_{d|n} 0.d are: 1/10, 3/10, 2/5, 7/10, 3/5, 6/5, 4/5, 3/2, 13/10, 9/10, 21/100, 43/25, ...
%C See A276480(n) = the smallest number k such that floor(Sum_{d|k} 0.d) = n.
%H Jaroslav Krizek, <a href="/A276479/b276479.txt">Table of n, a(n) for n = 1..1000</a>
%F a(n) = floor(A276466(n)/A276467(n)).
%e For n=12: a(12) = floor(Sum_{d|12} 0.d) = floor(0.1 + 0.2 + 0.3 + 0.4 + 0.6 + 0.12 = 0.72) = floor(172/100) = floor(43/25) = 1.
%t Table[Floor@ Total@ (#*1/10^(1 + Floor@ Log10@ #)) &@ Divisors@ n, {n, 120}] (* _Michael De Vlieger_, Sep 06 2016 *)
%o (Magma) [Floor(&+[d / (10^(#Intseq(d))): d in Divisors(n)]): n in [1..1000]]
%o (PARI) a(n) = floor(sumdiv(n, d, d/10^(#Str(d)))); \\ _Michel Marcus_, Sep 05 2016
%o (Python 3)
%o from fractions import Fraction
%o from sympy import divisors
%o def A276479(n):
%o return sum(Fraction(d,10**len(str(d))) for d in divisors(n)).__floor__() # _Chai Wah Wu_, Sep 08 2016
%Y Cf. A276466, A276467, A276480.
%K nonn,base
%O 1,18
%A _Jaroslav Krizek_, Sep 05 2016