login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366794
Binary encoding of the twos (-1's) in the balanced ternary representation of Per Nørgård's "infinity sequence".
2
0, 0, 1, 1, 0, 0, 2, 0, 1, 1, 0, 0, 1, 1, 2, 0, 0, 0, 2, 0, 0, 0, 1, 1, 2, 0, 0, 0, 0, 2, 3, 3, 1, 1, 0, 0, 1, 1, 2, 0, 0, 0, 1, 1, 0, 0, 2, 0, 1, 1, 2, 0, 1, 1, 0, 0, 2, 0, 1, 1, 0, 2, 4, 2, 0, 0, 2, 0, 0, 0, 1, 1, 2, 0, 0, 0, 0, 2, 3, 3, 0, 0, 1, 1, 0, 0, 2, 0, 1, 1, 0, 0, 1, 1, 2, 0, 2, 0, 0, 0, 0, 2, 3, 3, 0, 0
OFFSET
0,7
COMMENTS
The composer Per Nørgård's name is also written in the OEIS as Per Noergaard.
FORMULA
a(n) = A289814(A323909(n)).
EXAMPLE
A004718(254) = -7. In balanced ternary representation (see A117966) this is represented as -1*9 + 1*3 + -1*1. Taking the negative coefficients, and converting them to a binary string gives "101", which in base-2 (A007088) is equal to 5, therefore a(254) = 5.
PROG
(PARI)
up_to = 65536;
A004718list(up_to) = { my(v=vector(up_to)); v[1]=1; v[2]=-1; for(n=3, up_to, v[n] = if(n%2, 1+v[n>>1], -v[n/2])); (v); }; \\ From the code in A004718.
v004718 = A004718list(up_to);
A004718(n) = if(!n, n, v004718[n]);
A117967(n) = if(n<=1, n, if(!(n%3), 3*A117967(n/3), if(1==(n%3), 1+3*A117967((n-1)/3), 2+3*A117967((n+1)/3))));
A117968(n) = if(1==n, 2, if(!(n%3), 3*A117968(n/3), if(1==(n%3), 2+3*A117968((n-1)/3), 1+3*A117968((n+1)/3))));
A323909(n) = { my(x = A004718(n)); if(x >= 0, A117967(x), A117968(-x)); };
A289814(n) = { my (d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==2, 1, 0)), 2); };
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 24 2023
STATUS
approved