login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A067745
Numerator of ((3*n - 2)/(n^(2*n - 1)*(2*n - 1)*4^(n - 1))).
11
1, 1, 7, 5, 13, 1, 19, 11, 25, 7, 31, 17, 37, 5, 43, 23, 49, 13, 55, 29, 61, 1, 67, 35, 73, 19, 79, 41, 85, 11, 91, 47, 97, 25, 103, 53, 109, 7, 115, 59, 121, 31, 127, 65, 133, 17, 139, 71, 145, 37, 151, 77, 157, 5, 163, 83, 169, 43, 175, 89, 181, 23, 187, 95, 193, 49, 199
OFFSET
1,3
COMMENTS
Conjecture: Odd part of 3n-2. - Ralf Stephan, Nov 18 2010
Conjecture is true. Note that gcd(3n-2,2n-1)=1 (because 2(3n-2)-3(2n-1) = -1) and gcd(3n-2,n) = 1 or 2. If 2^k | (3n-2), then k <= log_2(3n-2) < (n-1)/2 for n >= 11. So only the cases n <= 10 need to be checked individually. - Robert Israel, May 16 2017
This sequence is equivalent to A165355 where each element is reduced by the highest possible power of two. - Joe Slater, Nov 30 2016
Selecting each odd term gives b(n) = 6n+1 (A016921). A075677 is the even bisection of this sequence, while this sequence is the odd bisection of A075677. - Cory Kalm, Apr 29 2021
Numerator of n/2^n + (n-1)/2^(n-1), two Oresme numbers. - Paul Curtz, Dec 07 2021
LINKS
D. S. Mitrinovic and Slavko Simic, Special Functions from Long Ago: 5626, Amer. Math. Monthly 109, (2002), p. 83-84.
FORMULA
Assuming the above conjecture, a(n) = a((8+(3*n-2)*4^k)/12), for all k >= 1. - L. Edson Jeffery, Feb 15 2015
a(n) = A000265(A165355(n-1)). - Joe Slater, Nov 30 2016
a(n) = A000265(3*n-2). - R. J. Mathar, Aug 23 2020
a(n) = A075677(2*n-1). a(2*n) = A075677(n); a(2*n-1) = A016921(n). - Cory Kalm, May 03 2021
Sum_{k=1..n} a(k) ~ n^2. - Amiram Eldar, Aug 26 2024
MAPLE
f:= n -> (3*n-2)/2^padic:-ordp(3*n-2, 2):
map(f, [$1..100]); # Robert Israel, May 16 2017
MATHEMATICA
(* Assuming the above conjecture: *)
a067745[n_] := (3*n - 2)/2^IntegerExponent[3*n - 2, 2]; Table[a067745[n], {n, 67}] (* L. Edson Jeffery, Feb 15 2015 *)
PROG
(PARI) vector(80, n, numerator(((3*n - 2)/(n^(2*n - 1)*(2*n - 1)*4^(n - 1))))) \\ Michel Marcus, Feb 16 2015
(Magma) [Numerator(((3*n - 2)/(n^(2*n - 1)*(2*n - 1)*4^(n - 1)))): n in [1..80]]; // Vincenzo Librandi, Feb 16 2015
CROSSREFS
KEYWORD
easy,frac,nonn
AUTHOR
Marc LeBrun, Jan 29 2002
STATUS
approved