login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A067747
Primes interleaved between composite numbers: n-th prime followed by the n-th composite number.
3
2, 4, 3, 6, 5, 8, 7, 9, 11, 10, 13, 12, 17, 14, 19, 15, 23, 16, 29, 18, 31, 20, 37, 21, 41, 22, 43, 24, 47, 25, 53, 26, 59, 27, 61, 28, 67, 30, 71, 32, 73, 33, 79, 34, 83, 35, 89, 36, 97, 38, 101, 39, 103, 40, 107, 42, 109, 44, 113, 45, 127, 46, 131, 48, 137, 49, 139
OFFSET
1,1
COMMENTS
a(2*n-1) = A000040(n); a(2*n) = A002808(n). - Reinhard Zumkeller, Jan 29 2014
FORMULA
a(2*n-1) = A000040(n); a(2*n) = A002808(n). - Reinhard Zumkeller, Jan 29 2014
a(n) = A000040(ceiling(n/2))*A000035(n) + A002808(ceiling(n/2))*A059841(n), equivalent to the Zumkeller formula. - Chayim Lowen, Jul 29 2015
EXAMPLE
For n=4, the index is even. Therefore a(4)=A002808(4/2)=A002808(2)=6.
MAPLE
P, C:= selectremove(isprime, [$2..1000]):
seq(op([P[i], C[i]]), i=1..min(nops(P), nops(C))); # Robert Israel, Jul 24 2015
MATHEMATICA
Array[c, 1000]; pc=-1; nc=0; Do[If[PrimeQ[n], If[pc==999, Break[], pc+=2; c[pc]=n], If[nc<=998, nc+=2; c[nc]=n, Goto[ne]]]; Label[ne], {n, 2, 20000}]; Table[c[i], {i, 1000}] (* Zak Seidov, Mar 22 2008 *)
Composite[n_Integer] := FixedPoint[n + PrimePi@ # + 1 &, n + PrimePi@ n + 1]; Table[{Prime@ n, Composite@ n}, {n, 35}] // Flatten (* Robert G. Wilson v, Jun 08 2008 *)
PROG
(Haskell)
import Data.List (transpose)
a067747 n = a067747_list !! (n-1)
a067747_list = concat $ transpose [a000040_list, a002808_list]
-- Reinhard Zumkeller, Jan 29 2014
(PARI) c(n) = for(k=0, primepi(n), isprime(n++)&&k--); n; \\ A002808
a(n) = if (n%2, prime((n+1)/2), c((n+1)\2)); \\ Michel Marcus, Mar 06 2021
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Amarnath Murthy, Feb 26 2002
STATUS
approved