login
A073898
a(1) = 1; for n>1, a(n) = smallest even or odd number not occurring earlier accordingly as n is prime or composite.
8
1, 2, 4, 3, 6, 5, 8, 7, 9, 11, 10, 13, 12, 15, 17, 19, 14, 21, 16, 23, 25, 27, 18, 29, 31, 33, 35, 37, 20, 39, 22, 41, 43, 45, 47, 49, 24, 51, 53, 55, 26, 57, 28, 59, 61, 63, 30, 65, 67, 69, 71, 73, 32, 75, 77, 79, 81, 83, 34, 85, 36, 87, 89, 91, 93, 95, 38, 97, 99, 101, 40, 103
OFFSET
1,2
COMMENTS
Inverse of A073846. - Chayim Lowen, Oct 28 2015
FORMULA
a(n) = (4*pi(n)-2*n-1)*(pi(n)-pi(n-1)) + 2*(n - pi(n-1)) - 1, where pi = A000720. - Robert Israel, Oct 28 2015
MAPLE
A073898 :=proc(nmax) local a, n, k; a := [1] ; while nops(a) < nmax do n := nops(a)+1 ; if isprime(n) then k :=2; else k :=1; fi ; while k in a do k := k+2 ; od ; a := [op(a), k] ; od ; RETURN(a) ; end: op(A073898(80)) ; # R. J. Mathar, Jun 27 2007
MATHEMATICA
Table[(4 PrimePi[n] - 2 n - 1)*(PrimePi[n] - PrimePi[n - 1]) + 2 (n - PrimePi[n - 1]) - 1, {n, 72}] (* Michael De Vlieger, Nov 11 2015 *)
PROG
(PARI) vector(100, n, (4*primepi(n)-2*n-1)*(primepi(n)-primepi(n-1))+2*(n-primepi(n-1))-1) \\ Altug Alkan, Oct 29 2015
CROSSREFS
Cf. A073846.
Sequence in context: A135761 A086305 A328047 * A067747 A073846 A110458
KEYWORD
easy,nonn
AUTHOR
Amarnath Murthy, Aug 18 2002
EXTENSIONS
Corrected and extended by R. J. Mathar, Jun 27 2007
STATUS
approved