login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073895
a(1)=1. a(n)=a(n-1)+k(n). If a(n-1) is nonprime, k(n) is the smallest composite not in the set {k(i),i<n}. If a(n-1) is prime, k(n) is the smallest prime not in the set {k(i),i<n}.
2
1, 5, 7, 10, 16, 24, 33, 43, 48, 60, 74, 89, 96, 112, 130, 150, 171, 193, 204, 228, 253, 279, 306, 334, 364, 396, 429, 463, 476, 511, 547, 564, 602, 641, 660, 700, 742, 786, 831, 877, 900, 948, 997, 1026, 1076, 1127, 1179, 1233, 1288, 1344, 1401, 1459, 1490
OFFSET
1,2
EXAMPLE
a(2) = 1+4 = 5 which is prime hence a(3) = 5+2 = 7 which is also a prime,a(4)= 7+3 = 10 which is composite hence a(5) = 10 + 6 = 16.
MAPLE
A073895 :=proc(nmax) local a, kset; a := [1] ; kset := {} ; while nops(a) < nmax do k :=2; while k in kset or isprime(k)<>isprime(op(-1, a)) do k := k+1 ; od ; a := [op(a), op(-1, a)+k] ; kset := kset union {k} ; od ; RETURN(a) ; end: op(A073895(80)) ; # R. J. Mathar, Jun 27 2007
CROSSREFS
Sequence in context: A085382 A250194 A314293 * A356701 A320447 A113194
KEYWORD
nonn,easy
AUTHOR
Amarnath Murthy, Aug 18 2002
EXTENSIONS
More terms from R. J. Mathar, Jun 27 2007
STATUS
approved