login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071090
Sum of middle divisors of n.
33
1, 1, 0, 2, 0, 5, 0, 2, 3, 0, 0, 7, 0, 0, 8, 4, 0, 3, 0, 9, 0, 0, 0, 10, 5, 0, 0, 11, 0, 11, 0, 4, 0, 0, 12, 6, 0, 0, 0, 13, 0, 13, 0, 0, 14, 0, 0, 14, 7, 5, 0, 0, 0, 15, 0, 15, 0, 0, 0, 16, 0, 0, 16, 8, 0, 17, 0, 0, 0, 17, 0, 23, 0, 0, 0, 0, 18, 0, 0, 18, 9, 0, 0, 19, 0, 0, 0, 19, 0, 19, 20, 0, 0
OFFSET
1,4
COMMENTS
Divisors are in the half-open interval [sqrt(n/2), sqrt(n*2)).
Row sums of A299761. - Omar E. Pol, Jun 11 2022
LINKS
FORMULA
a(n) = A000203(n) - A302433(n). - Omar E. Pol, Jun 11 2022
MAPLE
A071090 := proc(n)
a := 0 ;
for d in numtheory[divisors](n) do
if d^2 >= n/2 and d^2 < n*2 then
a := a+d ;
end if;
end do:
a;
end proc: # R. J. Mathar, Jun 18 2015
MATHEMATICA
Table[Plus @@ Select[ Divisors[n], Sqrt[n/2] <= # < Sqrt[n*2] &], {n, 1, 95}]
PROG
(PARI) a(n)=sumdiv(n, d, if(d^2>=n/2 && d^2<2*n, d, 0)) \\ Charles R Greathouse IV, Aug 01 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 27 2002
STATUS
approved