login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of middle divisors of n.
33

%I #21 Jun 13 2022 03:05:10

%S 1,1,0,2,0,5,0,2,3,0,0,7,0,0,8,4,0,3,0,9,0,0,0,10,5,0,0,11,0,11,0,4,0,

%T 0,12,6,0,0,0,13,0,13,0,0,14,0,0,14,7,5,0,0,0,15,0,15,0,0,0,16,0,0,16,

%U 8,0,17,0,0,0,17,0,23,0,0,0,0,18,0,0,18,9,0,0,19,0,0,0,19,0,19,20,0,0

%N Sum of middle divisors of n.

%C Divisors are in the half-open interval [sqrt(n/2), sqrt(n*2)).

%C Row sums of A299761. - _Omar E. Pol_, Jun 11 2022

%H R. J. Mathar, <a href="/A071090/b071090.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = A000203(n) - A302433(n). - _Omar E. Pol_, Jun 11 2022

%p A071090 := proc(n)

%p a := 0 ;

%p for d in numtheory[divisors](n) do

%p if d^2 >= n/2 and d^2 < n*2 then

%p a := a+d ;

%p end if;

%p end do:

%p a;

%p end proc: # _R. J. Mathar_, Jun 18 2015

%t Table[Plus @@ Select[ Divisors[n], Sqrt[n/2] <= # < Sqrt[n*2] &], {n, 1, 95}]

%o (PARI) a(n)=sumdiv(n,d, if(d^2>=n/2 && d^2<2*n, d, 0)) \\ _Charles R Greathouse IV_, Aug 01 2016

%Y Cf. A000203, A067742, A071561, A071562, A299761, A302433.

%K nonn,easy

%O 1,4

%A _N. J. A. Sloane_, May 27 2002