OFFSET
1,1
COMMENTS
Apart from the first term, the same as A025016. - R. J. Mathar, Sep 17 2008
Since A007845 gives the smallest factorial having at least n trailing zeros, the first n digits read from the right are determined for m >= A007845(n) - 1. - Martin Renner, Feb 14 2021
EXAMPLE
Sum_{k=1..30} k! = 274410818470142134209703780940313.
The last 7 digits in reverse order give us the first 7 terms of this sequence: 3,1,3,0,4,9,0.
From Jon E. Schoenfield, Feb 16 2021: (Start)
The table below shows the 12 least-significant digits of Sum_{k=1..m} k! converging to the first 12 terms of this sequence (in reverse order) as m increases:
.
m Sum_{k=1..m} k! # corresponding digits
-- --------------- ----------------------
0 0 0
4 33 1
9 409113 2
14 93928268313 3
19 ...485935180313 4
24 ...567844940313 6
29 ...395300940313 7
34 ...323620940313 8
39 ...232420940313 9
44 ...080420940313 10
49 ...920420940313 12
...
oo ...920420940313
(End)
MATHEMATICA
Take[Reverse[IntegerDigits[Sum[n!, {n, 1, 500}]]], 100] (* generates first 100 terms *)
CROSSREFS
KEYWORD
easy,base,nonn
AUTHOR
Alexander Adamchuk, May 15 2003
STATUS
approved