login
A082648
Consider f(m) = Sum_{k=1..m} k! (A007489) when m is very large; a(n) = n-th digit from end.
1
3, 1, 3, 0, 4, 9, 0, 2, 4, 0, 2, 9, 8, 2, 5, 6, 3, 3, 2, 4, 4, 6, 5, 5, 2, 5, 0, 9, 3, 0, 5, 0, 1, 3, 9, 5, 3, 2, 3, 4, 0, 8, 4, 9, 9, 7, 0, 1, 1, 2, 6, 8, 3, 7, 4, 8, 6, 8, 7, 4, 9, 7, 4, 7, 4, 2, 2, 9, 0, 0, 4, 3, 3, 0, 5, 6, 5, 8, 6, 5
OFFSET
1,1
COMMENTS
Apart from the first term, the same as A025016. - R. J. Mathar, Sep 17 2008
Since A007845 gives the smallest factorial having at least n trailing zeros, the first n digits read from the right are determined for m >= A007845(n) - 1. - Martin Renner, Feb 14 2021
EXAMPLE
Sum_{k=1..30} k! = 274410818470142134209703780940313.
The last 7 digits in reverse order give us the first 7 terms of this sequence: 3,1,3,0,4,9,0.
From Jon E. Schoenfield, Feb 16 2021: (Start)
The table below shows the 12 least-significant digits of Sum_{k=1..m} k! converging to the first 12 terms of this sequence (in reverse order) as m increases:
.
m Sum_{k=1..m} k! # corresponding digits
-- --------------- ----------------------
0 0 0
4 33 1
9 409113 2
14 93928268313 3
19 ...485935180313 4
24 ...567844940313 6
29 ...395300940313 7
34 ...323620940313 8
39 ...232420940313 9
44 ...080420940313 10
49 ...920420940313 12
...
oo ...920420940313
(End)
MATHEMATICA
Take[Reverse[IntegerDigits[Sum[n!, {n, 1, 500}]]], 100] (* generates first 100 terms *)
CROSSREFS
KEYWORD
easy,base,nonn
AUTHOR
Alexander Adamchuk, May 15 2003
STATUS
approved