OFFSET
1,2
COMMENTS
The corresponding sequence for which 5n^2+4 is a square is A001906 (a bisection of the Fibonacci sequence).
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (0,18,0,-1).
FORMULA
a(n) = 18*a(n-2) - a(n-4).
G.f.: x*(1+7*x+7*x^2+x^3)/(1-18*x^2+x^4). - Colin Barker, Jun 14 2012
EXAMPLE
25 is a term of the sequence since 5*25^2 + 11 = 56^2.
MATHEMATICA
LinearRecurrence[{0, 18, 0, -1}, {1, 7, 25, 127}, 50] (* Paolo Xausa, Mar 18 2024 *)
PROG
(PARI) Vec(x*(1+7*x+7*x^2+x^3)/(1-18*x^2+x^4) + O(x^100)) \\ Colin Barker, Nov 06 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
John W. Layman, May 16 2003
EXTENSIONS
More terms from Colin Barker, Nov 06 2014
STATUS
approved