login
A099302
Number of integer solutions to x' = n, where x' is the arithmetic derivative of x.
21
0, 0, 1, 1, 1, 1, 1, 1, 2, 0, 2, 1, 2, 1, 3, 0, 2, 1, 2, 2, 3, 0, 4, 1, 3, 1, 2, 0, 3, 2, 4, 1, 4, 0, 4, 0, 2, 2, 3, 1, 4, 1, 4, 2, 4, 0, 6, 1, 4, 1, 3, 0, 5, 2, 4, 0, 4, 1, 7, 2, 3, 1, 5, 0, 6, 0, 3, 1, 5, 2, 7, 1, 5, 3, 5, 1, 7, 0, 6, 2, 5, 0, 8, 1, 5, 2, 4, 0, 9, 3, 6, 0, 5, 1, 8, 0, 3, 1, 6, 2, 8, 2, 5, 1, 6
OFFSET
2,9
COMMENTS
This is the i(n) function in the paper by Ufnarovski and Ahlander. Note that a(1) is infinite because all primes satisfy x' = 1. The plot shows the great difference in the number of solutions for even and odd n. Also compare sequence A189558, which gives the least number have n solutions, and A189560, which gives the least such odd number.
It appears that there are a finite number of even numbers having a given number of solutions. This conjecture is explored in A189561 and A189562.
REFERENCES
LINKS
Antti Karttunen, Table of n, a(n) for n = 2..100000 (terms 2..40000 from T. D. Noe)
Victor Ufnarovski and Bo Ahlander, How to Differentiate a Number, J. Integer Seqs., Vol. 6, 2003.
FORMULA
a(A098700(n)) = 0; a(A239433(n)) > 0. - Reinhard Zumkeller, Mar 18 2014
From Antti Karttunen, Jan 21 2024: (Start)
a(n) = Sum_{i=1..A002620(n)} [A003415(i)==n], where [ ] is the Iverson bracket.
a(2n) >= A002375(n), a(2n+1) >= A369054(2n+1).
(End)
MATHEMATICA
dn[0]=0; dn[1]=0; dn[n_]:=Module[{f=Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus@@(n*f[[2]]/f[[1]])]]; d1=Table[dn[n], {n, 40000}]; Table[Count[d1, n], {n, 2, 400}]
PROG
(Haskell)
a099302 n = length $ filter (== n) $ map a003415 [1 .. a002620 n]
-- Reinhard Zumkeller, Mar 18 2014
(Python)
from sympy import factorint
def A099302(n): return sum(1 for m in range(1, (n**2>>2)+1) if sum((m*e//p for p, e in factorint(m).items())) == n) # Chai Wah Wu, Sep 12 2022
(PARI)
up_to = 100000; \\ A002620(10^5) = 2500000000
A002620(n) = ((n^2)>>2);
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A099302list(up_to) = { my(d, c, v=vector(up_to)); for(i=1, A002620(up_to), d = A003415(i); if(d>1 && d<=up_to, v[d]++)); (v); };
v099302 = A099302list(up_to);
A099302(n) = v099302[n]; \\ Antti Karttunen, Jan 21 2024
CROSSREFS
Cf. A002620, A003415 (arithmetic derivative of n), A099303 (greatest x such that x' = n), A098699 (least x such that x' = n), A098700 (n such that x' = n has no integer solution), A239433 (n such that x' = n has at least one solution).
Cf. A002375 (a lower bound for even n), A369054 (a lower bound for n of the form 4m+3).
Sequence in context: A281545 A332033 A331981 * A219198 A352513 A025814
KEYWORD
nonn,look
AUTHOR
T. D. Noe, Oct 12 2004, Apr 24 2011
STATUS
approved