OFFSET
1,8
COMMENTS
Total number of parts in all partitions of n into distinct odd primes.
LINKS
FORMULA
G.f.: Sum_{k>=2} x^prime(k)/(1 + x^prime(k)) * Product_{k>=2} (1 + x^prime(k)).
EXAMPLE
a(23) = 7 because we have [23], [13, 7, 3], [11, 7, 5] and 1 + 3 + 3 = 7.
MATHEMATICA
nmax = 80; Rest[CoefficientList[Series[Sum[x^Prime[k]/(1 + x^Prime[k]), {k, 2, nmax}] Product[1 + x^Prime[k], {k, 2, nmax}], {x, 0, nmax}], x]]
PROG
(PARI)
sumparts(n, pred)={sum(k=1, n, 1 - 1/(1+pred(k)*x^k) + O(x*x^n))*prod(k=1, n, 1+pred(k)*x^k + O(x*x^n))}
{my(n=60); Vec(sumparts(n, v->v>2 && isprime(v)), -n)} \\ Andrew Howroyd, Dec 28 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 23 2017
STATUS
approved