login
Expansion of Sum_{k>=2} x^prime(k)/(1 + x^prime(k)) * Product_{k>=2} (1 + x^prime(k)).
1

%I #11 Dec 30 2017 09:49:48

%S 0,0,1,0,1,0,1,2,0,2,1,2,1,2,3,4,1,4,4,4,6,4,7,6,6,8,9,8,10,6,13,12,

%T 12,14,15,16,16,18,23,22,19,24,24,30,28,30,33,34,34,40,44,46,44,46,58,

%U 56,60,64,65,68,70,80,86,88,87,94,101,112,114,116,125,130,132,148,159,162,163,168,190,196

%N Expansion of Sum_{k>=2} x^prime(k)/(1 + x^prime(k)) * Product_{k>=2} (1 + x^prime(k)).

%C Total number of parts in all partitions of n into distinct odd primes.

%H Andrew Howroyd, <a href="/A281545/b281545.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Par#partN">Index entries for related partition-counting sequences</a>

%F G.f.: Sum_{k>=2} x^prime(k)/(1 + x^prime(k)) * Product_{k>=2} (1 + x^prime(k)).

%e a(23) = 7 because we have [23], [13, 7, 3], [11, 7, 5] and 1 + 3 + 3 = 7.

%t nmax = 80; Rest[CoefficientList[Series[Sum[x^Prime[k]/(1 + x^Prime[k]), {k, 2, nmax}] Product[1 + x^Prime[k], {k, 2, nmax}], {x, 0, nmax}], x]]

%o (PARI)

%o sumparts(n, pred)={sum(k=1, n, 1 - 1/(1+pred(k)*x^k) + O(x*x^n))*prod(k=1, n, 1+pred(k)*x^k + O(x*x^n))}

%o {my(n=60); Vec(sumparts(n, v->v>2 && isprime(v)), -n)} \\ _Andrew Howroyd_, Dec 28 2017

%Y Cf. A024938, A024939, A065091.

%K nonn

%O 1,8

%A _Ilya Gutkovskiy_, Jan 23 2017