OFFSET
0,2
COMMENTS
A060642 describes the ordered case.
Number of twice-partitions of n of length k. A twice-partition of n is a choice of a partition of each part in a partition of n. - Gus Wiseman, Mar 23 2018
FORMULA
G.f.: 1/Product_{k>0} (1-y*A000041(k)*x^k). - Vladeta Jovovic, May 21 2006
EXAMPLE
Triangle begins:
1
2 1
3 2 1
5 7 2 1
7 11 7 2 1
11 26 19 7 2 1
15 40 38 19 7 2 1
22 83 78 54 19 7 2 1
30 120 168 102 54 19 7 2 1
42 223 301 244 134 54 19 7 2 1
56 320 557 471 292 134 54 19 7 2 1
The T(5,3) = 7 twice-partitions: (3)(1)(1), (21)(1)(1), (111)(1)(1), (2)(2)(1), (2)(11)(1), (11)(2)(1), (11)(11)(1). - Gus Wiseman, Mar 23 2018
MATHEMATICA
nn=12;
ser=Product[1/(1-PartitionsP[n]x^n y), {n, nn}];
Table[SeriesCoefficient[ser, {x, 0, n}, {y, 0, k}], {n, nn}, {k, n}] (* Gus Wiseman, Mar 23 2018 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alford Arnold, May 19 2006
EXTENSIONS
More terms and better definition from Vladeta Jovovic, May 21 2006
STATUS
approved