login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A119440
Triangle read by rows: T(n,k) is the number of binary sequences of length n that start with exactly k 01's (0 <= k <= floor(n/2)).
3
1, 2, 3, 1, 6, 2, 12, 3, 1, 24, 6, 2, 48, 12, 3, 1, 96, 24, 6, 2, 192, 48, 12, 3, 1, 384, 96, 24, 6, 2, 768, 192, 48, 12, 3, 1, 1536, 384, 96, 24, 6, 2, 3072, 768, 192, 48, 12, 3, 1, 6144, 1536, 384, 96, 24, 6, 2, 12288, 3072, 768, 192, 48, 12, 3, 1, 24576, 6144, 1536, 384, 96
OFFSET
0,2
COMMENTS
Row n contains 1+floor(n/2) terms.
Sum of entries in row n is 2^n (A000079).
T(n,0)=A098011(n+2). Except for a shift, all columns are identical.
G.f. of column k is x^(2k)*(1-x^2)/(1-2x).
Sum_{k=0..floor(n/2)} k*T(n,k) = A000975(n-1).
FORMULA
T(n,k) = 3*2^(n-2k-2) for n >= 2k+2; T(2k,k)=1; T(2k+1,k)=2.
G.f.: G(t,x) = (1-x^2)/((1-2*x)*(1-t*x^2)).
EXAMPLE
T(6,2)=3 because we have 010100, 010110 and 010111.
Triangle starts:
1;
2;
3, 1;
6, 2;
12, 3, 1;
24, 6, 2;
48, 12, 3, 1;
MAPLE
T:=proc(n, k) if 2*k+2<=n then 3*2^(n-2*k-2) elif n=2*k then 1 elif n=2*k+1 then 2 else 0 fi end: for n from 0 to 16 do seq(T(n, k), k=0..floor(n/2)) od; # yields sequence in triangular form
MATHEMATICA
nn=15; a=1/(1-y x^2); c=1/(1-2x); Map[Select[#, #>0&]&, CoefficientList[Series[1+x c+x^2 a c+x a +x^2y a+x^3y a c, {x, 0, nn}], {x, y}]]//Grid (* Geoffrey Critzer, Jan 03 2014 *)
CoefficientList[CoefficientList[Series[(1 - x^2)/((1 - 2*x)*(1 - y*x^2)), {x, 0, 10}, {y, 0, 10}], x], y] // Flatten (* G. C. Greubel, Oct 10 2017 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, May 19 2006
STATUS
approved