OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened
FORMULA
T(n,k) = 3*2^(n-2k-2) for n >= 2k+2; T(2k,k)=1; T(2k+1,k)=2.
G.f.: G(t,x) = (1-x^2)/((1-2*x)*(1-t*x^2)).
EXAMPLE
T(6,2)=3 because we have 010100, 010110 and 010111.
Triangle starts:
1;
2;
3, 1;
6, 2;
12, 3, 1;
24, 6, 2;
48, 12, 3, 1;
MAPLE
T:=proc(n, k) if 2*k+2<=n then 3*2^(n-2*k-2) elif n=2*k then 1 elif n=2*k+1 then 2 else 0 fi end: for n from 0 to 16 do seq(T(n, k), k=0..floor(n/2)) od; # yields sequence in triangular form
MATHEMATICA
nn=15; a=1/(1-y x^2); c=1/(1-2x); Map[Select[#, #>0&]&, CoefficientList[Series[1+x c+x^2 a c+x a +x^2y a+x^3y a c, {x, 0, nn}], {x, y}]]//Grid (* Geoffrey Critzer, Jan 03 2014 *)
CoefficientList[CoefficientList[Series[(1 - x^2)/((1 - 2*x)*(1 - y*x^2)), {x, 0, 10}, {y, 0, 10}], x], y] // Flatten (* G. C. Greubel, Oct 10 2017 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, May 19 2006
STATUS
approved