login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008446
Theta series of A_6 lattice.
5
1, 42, 210, 350, 882, 1050, 1750, 2100, 3570, 3066, 5250, 5124, 7350, 7350, 10500, 8064, 14322, 12600, 15330, 15750, 22050, 16814, 25620, 22260, 29750, 25242, 36750, 28700, 44100, 35364, 40320, 42000, 57330, 42700, 63000, 50442, 64386, 57540, 78750, 56448
OFFSET
0,2
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 110.
LINKS
EXAMPLE
1 + 42*q^2 + 210*q^4 + 350*q^6 + 882*q^8 + 1050*q^10 + 1750*q^12 + 2100*q^14 + 3570*q^16 + 3066*q^18 + 5250*q^20 + 5124*q^22 + 7350*q^24 + 7350*q^26 + 10500*q^28 + 8064*q^30 + 14322*q^32 + 12600*q^34 + 15330*q^36 + 15750*q^38 + 22050*q^40 + 16814*q^42 + 25620*q^44 + ...
MATHEMATICA
terms = 40; f[q_] = LatticeData["A6", "ThetaSeriesFunction"][-I Log[q]/Pi]; s = Series[f[q], {q, 0, 2 terms}]; DeleteCases[CoefficientList[s, q^(1/2) ] // Round, 0][[1 ;; terms]] (* Jean-François Alcover, Jul 04 2017 *)
PROG
(Magma) L:=Lattice("A", 6); T1<q> := ThetaSeries(L, 120);
CROSSREFS
Sequence in context: A299817 A236278 A236271 * A255424 A122232 A193392
KEYWORD
nonn,easy,nice
STATUS
approved