

A008443


Number of ordered ways of writing n as the sum of 3 triangular numbers.


49



1, 3, 3, 4, 6, 3, 6, 9, 3, 7, 9, 6, 9, 9, 6, 6, 15, 9, 7, 12, 3, 15, 15, 6, 12, 12, 9, 12, 15, 6, 13, 21, 12, 6, 15, 9, 12, 24, 9, 18, 12, 9, 18, 15, 12, 13, 24, 9, 15, 24, 6, 18, 27, 6, 12, 15, 18, 24, 21, 15, 12, 27, 9, 13, 18, 15, 27, 27, 9, 12, 27, 15, 24, 21, 12, 15, 30, 15, 12
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Fermat asserted that every number is the sum of three triangular numbers. This was proved by Gauss, who recorded in his Tagebuch entry for Jul 10 1796 that: EYPHEKA! num = DELTA + DELTA + DELTA. See also Gauss, DA, art. 293.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Andrews (2016), Theorem 2, shows that A008443(n) = A290735(n) + A290737(n) + A290739(n). = N. J. A. Sloane, Aug 10 2017


REFERENCES

J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", SpringerVerlag, p. 102.
C. F. Gauss, Disquisitiones Arithmeticae, Yale University Press, 1966, New Haven and London, p. 342, art. 293.
M. Nathanson, Additive Number Theory: The Classical Bases, Graduate Texts in Mathematics, Volume 165, SpringerVerlag, 1996. See Chapter 1.


LINKS

N. J. A. Sloane, Table of n, a(n) for n = 0..20000 (First 5050 terms from T. D. Noe)
George E. Andrews, EYPHKA! num = Delta + Delta + Delta, J. Number Theory 23 (1986), 285293. [The Y in the title is really the Greek letter Upsilon and Delta is really the Greek letter of that name.]
George E. Andrews, The BhargavaAdiga Summation and Partitions, 2016.
M. Doring, J. Haidenbauer, U.G. Meissner and A. Rusetsky, Dynamical coupledchannel approaches on a momentum lattice, arXiv preprint arXiv:1108.0676 [heplat], 2011.
M. D. Hirschhorn & J. A. Sellers, Partitions Into Three Triangular Numbers
M. D. Hirschhorn & J. A. Sellers, On Representations Of A Number As A Sum Of Three Triangles, Acta Arithmetica 77 (1996), 289  301.
K. Ono, S. Robins and P. T. Wahl, On the representation of integers as sums of triangular numbers, Aequationes mathematicae, August 1995, Volume 50, Issue 12, pp 7394.
M. Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions


FORMULA

Expansion of Jacobi theta constant theta_2^3 /8. G.f. is cube of g.f. for A010054.
Expansion of psi(q)^3 in powers of q where psi() is a Ramanujan theta function (A010054).  Michael Somos, Oct 25 2006
Expansion of q^(3/8) * (eta(q^2)^2 / eta(q))^3 in powers of q.  Michael Somos, May 29 2012
Euler transform of period 2 sequence [ 3, 3, ...].  Michael Somos, Oct 25 2006
G.f. is a period 1 Fourier series which satisfies f(1 / (16 t)) = 2^(3/2) (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A213384.  Michael Somos, Jun 23 2012
a(3*n) = A213627(n). a(3*n + 1) = 3 * A213617(n). a(3*n + 2) = A181648(n).  Michael Somos, Jun 23 2012
G.f.: (Sum_{k>0} x^((k^2  k)/2))^3 = (Product_{k>0} (1 + x^k) * (1  x^(2*k)))^3.  Michael Somos, May 29 2012
a(n) = A005869(n)/2 = A005886(n)/4 = A005878(n)/8.
a(n) = A005875(8*n+3)/8. See, e.g., the Ono et al. link: The case k=3.  Wolfdieter Lang, Jan 12 2017
a(0) = 1, a(n) = (3/n)*Sum_{k=1..n} A002129(k)*a(nk) for n > 0.  Seiichi Manyama, May 06 2017


EXAMPLE

5 can be written as 3+1+1, 1+3+1, 1+1+3, so a(5) = 3.
G.f. = 1 + 3*x + 3*x^2 + 4*x^3 + 6*x^4 + 3*x^5 + 6*x^6 + 9*x^7 + 3*x^8 + ...
G.f. = q^3 + 3*q^11 + 3*q^19 + 4*q^27 + 6*q^35 + 3*q^43 + 6*q^51 + 9*q^59 + 3*q^67 + ...


MAPLE

s1 := sum(q^(n*(n+1)/2), n=0..30): s2 := series(s1^3, q, 250): for i from 0 to 200 do printf(`%d, `, coeff(s2, q, i)) od:


MATHEMATICA

s1 = Sum[q^(n (n + 1)/2), {n, 0, 12}]; s2 = Series[s1^3, {q, 0, 80}]; CoefficientList[s2, q] (* JeanFrançois Alcover, Oct 04 2011, after Maple *)
a[ n_] := SeriesCoefficient[ (1/8) EllipticTheta[ 2, 0, q]^3, {q, 0, 2 n + 3/4}]; (* Michael Somos, May 29 2012 *)
QP = QPochhammer; CoefficientList[(QP[q^2]^2/QP[q])^3 + O[q]^80, q] (* JeanFrançois Alcover, Nov 24 2015 *)


PROG

(PARI) {a(n) = if( n<0, 0, polcoeff( sum(k=0, (sqrtint(8*n + 1)  1)\2, x^((k^2 + k)/2), x * O(x^n))^3, n))}; /* Michael Somos, Oct 25 2006 */
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 / eta(x + A))^3, n))}; /* Michael Somos, Oct 25 2006 */
(MAGMA) Basis( ModularForms( Gamma0(16), 3/2), 630)[4] /* Michael Somos, Aug 26 2015 */


CROSSREFS

Number of ways of writing n as a sum of k triangular numbers, for k=1,...: A010054, A008441, A008443, A008438, A008439, A008440,A226252, A007331, A226253, A226254, A226255, A014787, A014809.
Cf. A053604, A002636.
Partial sums are in A038835.
Cf. A005869, A005875, A005878, A005886.
Cf. A290733A290740.
Sequence in context: A043551 A162888 A151759 * A196456 A196485 A196718
Adjacent sequences: A008440 A008441 A008442 * A008444 A008445 A008446


KEYWORD

nonn,easy,nice


AUTHOR

N. J. A. Sloane


EXTENSIONS

More terms from James A. Sellers, Feb 07 2001


STATUS

approved



