|
|
A008443
|
|
Number of ordered ways of writing n as the sum of 3 triangular numbers.
|
|
51
|
|
|
1, 3, 3, 4, 6, 3, 6, 9, 3, 7, 9, 6, 9, 9, 6, 6, 15, 9, 7, 12, 3, 15, 15, 6, 12, 12, 9, 12, 15, 6, 13, 21, 12, 6, 15, 9, 12, 24, 9, 18, 12, 9, 18, 15, 12, 13, 24, 9, 15, 24, 6, 18, 27, 6, 12, 15, 18, 24, 21, 15, 12, 27, 9, 13, 18, 15, 27, 27, 9, 12, 27, 15, 24, 21, 12, 15, 30, 15, 12
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Fermat asserted that every number is the sum of three triangular numbers. This was proved by Gauss, who recorded in his Tagebuch entry for Jul 10 1796 that: EYPHEKA! num = DELTA + DELTA + DELTA. See also Gauss, DA, art. 293.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Andrews (2016), Theorem 2, shows that A008443(n) = A290735(n) + A290737(n) + A290739(n). = N. J. A. Sloane, Aug 10 2017
|
|
REFERENCES
|
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 102.
C. F. Gauss, Disquisitiones Arithmeticae, Yale University Press, 1966, New Haven and London, p. 342, art. 293.
M. Nathanson, Additive Number Theory: The Classical Bases, Graduate Texts in Mathematics, Volume 165, Springer-Verlag, 1996. See Chapter 1.
|
|
LINKS
|
N. J. A. Sloane, Table of n, a(n) for n = 0..20000 (First 5050 terms from T. D. Noe)
George E. Andrews, EYPHKA! num = Delta + Delta + Delta, J. Number Theory 23 (1986), 285-293. [The Y in the title is really the Greek letter Upsilon and Delta is really the Greek letter of that name.]
George E. Andrews, The Bhargava-Adiga Summation and Partitions, 2016.
M. Doring, J. Haidenbauer, U.-G. Meissner and A. Rusetsky, Dynamical coupled-channel approaches on a momentum lattice, arXiv preprint arXiv:1108.0676 [hep-lat], 2011.
M. D. Hirschhorn & J. A. Sellers, Partitions into three triangular numbers, Australasian Journal of Combinatorics, Volume 30 (2004), Pages 307-318; Submission.
M. D. Hirschhorn & J. A. Sellers, On Representations Of A Number As A Sum Of Three Triangles, Acta Arithmetica 77 (1996), 289 - 301.
K. Ono, S. Robins and P. T. Wahl, On the representation of integers as sums of triangular numbers, Aequationes mathematicae, August 1995, Volume 50, Issue 1-2, pp 73-94.
M. Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
|
|
FORMULA
|
Expansion of Jacobi theta constant theta_2^3 /8. G.f. is cube of g.f. for A010054.
Expansion of psi(q)^3 in powers of q where psi() is a Ramanujan theta function (A010054). - Michael Somos, Oct 25 2006
Expansion of q^(-3/8) * (eta(q^2)^2 / eta(q))^3 in powers of q. - Michael Somos, May 29 2012
Euler transform of period 2 sequence [ 3, -3, ...]. - Michael Somos, Oct 25 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 2^(-3/2) (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A213384. - Michael Somos, Jun 23 2012
a(3*n) = A213627(n). a(3*n + 1) = 3 * A213617(n). a(3*n + 2) = A181648(n). - Michael Somos, Jun 23 2012
G.f.: (Sum_{k>0} x^((k^2 - k)/2))^3 = (Product_{k>0} (1 + x^k) * (1 - x^(2*k)))^3. - Michael Somos, May 29 2012
a(n) = A005869(n)/2 = A005886(n)/4 = A005878(n)/8.
a(n) = A005875(8*n+3)/8. See, e.g., the Ono et al. link: The case k=3. - Wolfdieter Lang, Jan 12 2017
a(0) = 1, a(n) = (3/n)*Sum_{k=1..n} A002129(k)*a(n-k) for n > 0. - Seiichi Manyama, May 06 2017
|
|
EXAMPLE
|
5 can be written as 3+1+1, 1+3+1, 1+1+3, so a(5) = 3.
G.f. = 1 + 3*x + 3*x^2 + 4*x^3 + 6*x^4 + 3*x^5 + 6*x^6 + 9*x^7 + 3*x^8 + ...
G.f. = q^3 + 3*q^11 + 3*q^19 + 4*q^27 + 6*q^35 + 3*q^43 + 6*q^51 + 9*q^59 + 3*q^67 + ...
|
|
MAPLE
|
s1 := sum(q^(n*(n+1)/2), n=0..30): s2 := series(s1^3, q, 250): for i from 0 to 200 do printf(`%d, `, coeff(s2, q, i)) od:
|
|
MATHEMATICA
|
s1 = Sum[q^(n (n + 1)/2), {n, 0, 12}]; s2 = Series[s1^3, {q, 0, 80}]; CoefficientList[s2, q] (* Jean-François Alcover, Oct 04 2011, after Maple *)
a[ n_] := SeriesCoefficient[ (1/8) EllipticTheta[ 2, 0, q]^3, {q, 0, 2 n + 3/4}]; (* Michael Somos, May 29 2012 *)
QP = QPochhammer; CoefficientList[(QP[q^2]^2/QP[q])^3 + O[q]^80, q] (* Jean-François Alcover, Nov 24 2015 *)
|
|
PROG
|
(PARI) {a(n) = if( n<0, 0, polcoeff( sum(k=0, (sqrtint(8*n + 1) - 1)\2, x^((k^2 + k)/2), x * O(x^n))^3, n))}; /* Michael Somos, Oct 25 2006 */
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 / eta(x + A))^3, n))}; /* Michael Somos, Oct 25 2006 */
(MAGMA) Basis( ModularForms( Gamma0(16), 3/2), 630)[4] /* Michael Somos, Aug 26 2015 */
|
|
CROSSREFS
|
Number of ways of writing n as a sum of k triangular numbers, for k=1,...: A010054, A008441, A008443, A008438, A008439, A008440,A226252, A007331, A226253, A226254, A226255, A014787, A014809.
Cf. A053604, A002636.
Partial sums are in A038835.
Cf. A005869, A005875, A005878, A005886.
Cf. A290733-A290740.
Sequence in context: A162888 A337402 A151759 * A196456 A196485 A196718
Adjacent sequences: A008440 A008441 A008442 * A008444 A008445 A008446
|
|
KEYWORD
|
nonn,easy,nice
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
More terms from James A. Sellers, Feb 07 2001
|
|
STATUS
|
approved
|
|
|
|