login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290733
Number of compact partitions of n where each partition is counted with a certain weight.
7
0, -1, 2, -1, 0, -3, 3, 2, 0, -3, 1, -2, -1, 0, 5, 3, -2, -4, 1, -2, 1, -3, -1, 4, 2, 1, 6, -3, -3, -6, 1, 2, -2, -1, 2, -4, 3, 4, 4, 3, 2, -8, -1, -2, -1, -4, 0, 4, -2, -1, 4, -3, 3, 0, 7, 1, 3, 2, -6, -6, -5, -4, 4, 2, -2
OFFSET
0,3
COMMENTS
See Andrews (2016) for the definition of the particular weight used here.
4*a(n) + 2*A290734(n) = (-1)^n*A005875(n) for n > 0.
LINKS
FORMULA
See Maple program for g.f.
MAPLE
M:=101;
B:=proc(a, q, n) local j, t1; global M;
t1:=1;
for j from 0 to M do
t1:=t1*(1-a*q^j)/(1-a*q^(n+j));
od;
t1; end;
# c_0
t2:=add((-1)^m*q^m*B(-q, q, m-1)/(1+q^m), m=1..M):
series(t2, q, M);
seriestolist(%);
CROSSREFS
Sequence in context: A215062 A215063 A316781 * A113020 A347277 A357734
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Aug 10 2017
STATUS
approved