login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290732
Number of distinct values of X*(3*X-1)/2 mod n.
6
1, 2, 3, 4, 3, 6, 4, 8, 9, 6, 6, 12, 7, 8, 9, 16, 9, 18, 10, 12, 12, 12, 12, 24, 11, 14, 27, 16, 15, 18, 16, 32, 18, 18, 12, 36, 19, 20, 21, 24, 21, 24, 22, 24, 27, 24, 24, 48, 22, 22, 27, 28, 27, 54, 18, 32, 30, 30, 30, 36
OFFSET
1,2
LINKS
Andreas Enge, William Hart, Fredrik Johansson, Short addition sequences for theta functions, arXiv:1608.06810 [math.NT], (24-August-2016). See Table 6.
FORMULA
a(3^n) = 3^n. - Hugo Pfoertner, Aug 25 2018
a(n) = A317623(n) * A040001(n). - Andrew Howroyd, Oct 27 2018
Multiplicative with a(2^e) = 2^e, a(3^e) = 3^e, a(p^e) = 1 + floor( p^(e+1)/(2*p+2) ) for prime p >= 5. - Andrew Howroyd, Nov 03 2018
EXAMPLE
The values taken by (3*X^2-X)/2 mod n for small n are:
1, [0]
2, [0, 1]
3, [0, 1, 2]
4, [0, 1, 2, 3]
5, [0, 1, 2]
6, [0, 1, 2, 3, 4, 5]
7, [0, 1, 2, 5]
8, [0, 1, 2, 3, 4, 5, 6, 7]
9, [0, 1, 2, 3, 4, 5, 6, 7, 8]
10, [0, 1, 2, 5, 6, 7]
11, [0, 1, 2, 4, 5, 7]
12, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
...
MAPLE
a:=[]; M:=80;
for n from 1 to M do
q1:={};
for i from 0 to 2*n-1 do q1:={op(q1), i*(3*i-1)/2 mod n}; od;
s1:=sort(convert(q1, list));
a:=[op(a), nops(s1)];
od:
a;
MATHEMATICA
a[n_] := Table[PolynomialMod[X(3X-1)/2, n], {X, 0, 2*n-1}]// Union // Length;
Array[a, 60] (* Jean-François Alcover, Sep 01 2018 *)
PROG
(PARI) a(n)={my(v=vector(n)); for(i=0, 2*n-1, v[i*(3*i-1)/2%n + 1]=1); vecsum(v)} \\ Andrew Howroyd, Oct 27 2018
(PARI) a(n)={my(f=factor(n)); prod(i=1, #f~, my([p, e]=f[i, ]); if(p<=3, p^e, 1 + p^(e+1)\(2*p+2)))} \\ Andrew Howroyd, Nov 03 2018
CROSSREFS
Cf. A000224 (analog for X^2), A014113, A290729, A290730, A290731, A317623.
Sequence in context: A138796 A186970 A064380 * A353201 A229110 A229949
KEYWORD
nonn,mult
AUTHOR
N. J. A. Sloane, Aug 10 2017
EXTENSIONS
Even terms corrected by Andrew Howroyd, Nov 03 2018
STATUS
approved