login
A290730
Analog of A084848, replacing "quadratic residue" (X^2) with "value of X(3X-1)/2". a(n) = A290732(A290729(n)).
3
1, 3, 4, 6, 7, 9, 10, 12, 11, 12, 18, 21, 24, 28, 36, 40, 42, 44, 66, 77, 72, 84, 108, 120, 126, 162, 168, 216, 240, 252, 280, 264, 308, 396, 440, 462, 594, 504, 648, 720, 756, 840, 1008, 1080, 1134, 1260, 1512, 1512, 1680, 2016
OFFSET
1,2
LINKS
Andreas Enge, William Hart, Fredrik Johansson, Short addition sequences for theta functions, arXiv:1608.06810 [math.NT], 2016-2018. See Table 6.
MATHEMATICA
a290732[n_] := Product[{p, e} = pe; If[p <= 3, p^e, (p^e - p^(e-1))/2 + (p^(e-1) - p^(Mod[e+1, 2]))/(2*(p+1))+1], {pe, FactorInteger[n]}];
r = 2; Reap[For[j = 1, j <= 24001, j = j+1, w = a290732[j]; t = w/j; If[t < r, r = t; Sow[w]]]][[2, 1]] (* Jean-François Alcover, Oct 03 2018, after Hugo Pfoertner *)
PROG
(PARI) a290732(n)={my(f=factor(n)); prod(k=1, #f~, my([p, e]=f[k, ]); if(p<=3, p^e, (p^e-p^(e-1))/2+(p^(e-1)-p^((e+1)%2))/(2*(p+1))+1))}
my(r=2); for(j=1, 24001, my(w=a290732(j), t=w/j); if(t<r, r=t; print1(w, ", "))) \\ Hugo Pfoertner, Aug 26 2018
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 10 2017
EXTENSIONS
More terms from Hugo Pfoertner, Aug 23 2018
a(1), a(19) and a(38) corrected by Hugo Pfoertner, Aug 26 2018
STATUS
approved