The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A215062 Triangle read by rows, e.g.f. exp(x*(z+3/2))/((exp(3*x/2)+2*cos(sqrt(3)*x/2))/3). 5
 1, 1, 1, 1, 2, 1, 0, 3, 3, 1, -3, 0, 6, 4, 1, -9, -15, 0, 10, 5, 1, 0, -54, -45, 0, 15, 6, 1, 99, 0, -189, -105, 0, 21, 7, 1, 477, 792, 0, -504, -210, 0, 28, 8, 1, 0, 4293, 3564, 0, -1134, -378, 0, 36, 9, 1, -11259, 0, 21465, 11880, 0, -2268 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS FORMULA Matrix inverse is A215063. T(n,k) = A215064(n,k) - A215060(n,k) + [n==k] EXAMPLE [0] [1] [1] [1, 1] [2] [1, 2, 1] [3] [0, 3, 3, 1] [4] [-3, 0, 6, 4, 1] [5] [-9, -15, 0, 10, 5, 1] [6] [0, -54, -45, 0, 15, 6, 1] [7] [99, 0, -189, -105, 0, 21, 7, 1] [8] [477, 792, 0, -504, -210, 0, 28, 8, 1] [9] [0, 4293, 3564, 0, -1134, -378, 0, 36, 9, 1] MATHEMATICA max = 11; f = Exp[x*(z + 3/2)]/((Exp[3*(x/2)] + 2*Cos[Sqrt[3]*(x/2)])/3); coes = CoefficientList[ Series[f, {x, 0, max}, {z, 0, max}], {x, z}]; Table[ coes[[n, k]]*(n-1)!, {n, 1, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 29 2013 *) PROG (Sage) def A215062_triangle(dim): # See A215060 for function 'triangle'.     var('x, z')     f = exp(x*(z+3/2))/((exp(3*x/2)+2*cos(sqrt(3)*x/2))/3)     return triangle(f, dim) A215062_triangle(12) CROSSREFS Cf. A215060, A215061, A215063, A215064, A215065. Sequence in context: A079123 A121548 A180179 * A215063 A316781 A290733 Adjacent sequences:  A215059 A215060 A215061 * A215063 A215064 A215065 KEYWORD sign,tabl AUTHOR Peter Luschny, Aug 01 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 00:17 EDT 2021. Contains 345080 sequences. (Running on oeis4.)