The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A290739 a(n) = 0 unless n = 3j^2+2j or 3j^2+4j+1 for some j>=0, in which case a(n) = (-1)^(j+1). 6
 -1, -1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0 COMMENTS Andrews (2016), Theorem 2, shows that A008443(n) = A290735(n) + A290737(n) + A290739(n). LINKS Antti Karttunen, Table of n, a(n) for n = 0..65537 George E. Andrews, The Bhargava-Adiga Summation and Partitions, preprint 2016. See Th. 2. George E. Andrews, The Bhargava-Adiga Summation and Partitions, The Journal of the Indian Mathematical Society, Volume 84, Issue 3-4, 2017. MAPLE eps:=Array(0..120, 0); for j from 0 to 120 do if 3*j^2+2*j <= 120 then eps[3*j^2+2*j] := (-1)^(j+1); fi; if 3*j^2+4*j+1 <= 120 then eps[3*j^2+4*j+1] := (-1)^(j+1); fi; od; PROG (PARI) up_to = 65537; A290739list(up_to) = { my(v=vector(1+up_to), c1, c2); for(j=0, oo, c1 = ((3*j*j)+j+j); if(c1>up_to, return(v), v[1+c1] = (-1)^(1+j)); c2 = ((3*j*j) + (4*j) + 1); if(c2<=up_to, v[1+c2] = (-1)^(1+j))); }; v290739 = A290739list(up_to); A290739(n) = v290739[1+n]; \\ Antti Karttunen, Jan 03 2019 CROSSREFS Cf. A008443, A290733, A290734, A290735, A290736, A290737, A290738, A290739. Cf. A000567, A045944. Sequence in context: A179776 A089802 A089801 * A143064 A185124 A185125 Adjacent sequences:  A290736 A290737 A290738 * A290740 A290741 A290742 KEYWORD sign AUTHOR N. J. A. Sloane, Aug 10 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 11:10 EST 2020. Contains 331105 sequences. (Running on oeis4.)