login
A286399
Expansion of eta(q^2)^12 * eta(q^4)^8 / eta(q)^8 in powers of q.
2
0, 0, 1, 8, 32, 96, 244, 528, 1024, 1856, 3126, 5016, 7808, 11616, 16808, 23856, 32768, 44352, 59293, 77352, 100032, 128128, 161052, 201264, 249856, 305280, 371294, 450128, 537856, 640992, 762744, 894528, 1048576, 1228224, 1419858, 1642080, 1897376, 2167008
OFFSET
0,4
COMMENTS
The average order of a(n) is n^5 * Pi^6 / 30720. - Vaclav Kotesovec, Feb 09 2023
LINKS
FORMULA
G.f.: x^2 * Product_{k>0} (1 - x^(2 * k))^12 * (1 - x^(4 * k))^8 / (1 - x^k)^8.
MATHEMATICA
CoefficientList[x^2 * Series[QPochhammer[x^2]^12 * QPochhammer[x^4]^8 / QPochhammer[x]^8, {x, 0, 40}], x] (* Vaclav Kotesovec, Feb 08 2023 *)
CROSSREFS
Cf. A013973 (E_6), A045828.
Sequence in context: A375002 A053348 A019256 * A014969 A139820 A241204
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 08 2017
STATUS
approved