login
A157757
a(n) = 2809*n^2 - 4618*n + 1898.
3
89, 3898, 13325, 28370, 49033, 75314, 107213, 144730, 187865, 236618, 290989, 350978, 416585, 487810, 564653, 647114, 735193, 828890, 928205, 1033138, 1143689, 1259858, 1381645, 1509050, 1642073, 1780714, 1924973, 2074850
OFFSET
1,1
COMMENTS
The identity (15780962*n^2-25943924*n+10662963)^2-(2809*n^2-4618*n+1898)*(297754*n-244754)^2=1 can be written as A157759(n)^2-a(n)*A157758(n)^2=1.
FORMULA
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
G.f.: x*(-89-3631*x-1898*x^2)/(x-1)^3.
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {89, 3898, 13325}, 40]
Table[2809n^2-4618n+1898, {n, 40}] (* Harvey P. Dale, Aug 02 2024 *)
PROG
(Magma) I:=[89, 3898, 13325]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
(PARI) a(n) = 2809*n^2 - 4618*n + 1898;
CROSSREFS
Sequence in context: A264068 A189020 A322503 * A017805 A017752 A282478
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 06 2009
STATUS
approved