login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = largest integer power m for which a representation of the form n = k^m exists (for some k).
127

%I #58 Aug 31 2022 10:51:21

%S 0,1,1,2,1,1,1,3,2,1,1,1,1,1,1,4,1,1,1,1,1,1,1,1,2,1,3,1,1,1,1,5,1,1,

%T 1,2,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,1,1,1,1,

%U 1,1,1,1,1,1,1,1,1,1,1,1,4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1

%N a(n) = largest integer power m for which a representation of the form n = k^m exists (for some k).

%C Greatest common divisor of all prime-exponents in canonical factorization of n for n>1: a(n)>1 iff n is a perfect power; a(A001597(k))=A025479(k). - _Reinhard Zumkeller_, Oct 13 2002

%C a(1) set to 0 since there is no largest finite integer power m for which a representation of the form 1 = 1^m exists (infinite largest m). - _Daniel Forgues_, Mar 06 2009

%C A052410(n)^a(n) = n. - _Reinhard Zumkeller_, Apr 06 2014

%C Positions of 1's are A007916. Smallest base is given by A052410. - _Gus Wiseman_, Jun 09 2020

%H Daniel Forgues, <a href="/A052409/b052409.txt">Table of n, a(n) for n = 1..100000</a>

%H N. J. A. Sloane, <a href="/A278028/a278028.txt">Maple programs for A007916, A278028, A278029, A052409, A089723, A277564</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Power.html">Power</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PerfectPower.html">Perfect Power</a>

%H <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>

%F a(1) = 0; for n > 1, a(n) = gcd(A067029(n), a(A028234(n))). - _Antti Karttunen_, Aug 07 2017

%e n = 72 = 2*2*2*3*3: GCD[exponents] = GCD[3,2] = 1. This is the least n for which a(n) <> A051904(n), the minimum of exponents.

%e For n = 10800 = 2^4 * 3^3 * 5^2, GCD[4,3,2] = 1, thus a(10800) = 1.

%p # See link.

%p #

%p a:= n-> igcd(map(i-> i[2], ifactors(n)[2])[]):

%p seq(a(n), n=1..120); # _Alois P. Heinz_, Oct 20 2019

%t Table[GCD @@ Last /@ FactorInteger[n], {n, 100}] (* _Ray Chandler_, Jan 24 2006 *)

%o (Haskell)

%o a052409 1 = 0

%o a052409 n = foldr1 gcd $ a124010_row n

%o -- _Reinhard Zumkeller_, May 26 2012

%o (PARI) a(n)=my(k=ispower(n)); if(k, k, n>1) \\ _Charles R Greathouse IV_, Oct 30 2012

%o (Scheme) (define (A052409 n) (if (= 1 n) 0 (gcd (A067029 n) (A052409 (A028234 n))))) ;; _Antti Karttunen_, Aug 07 2017

%o (Python)

%o from math import gcd

%o from sympy import factorint

%o def A052409(n): return gcd(*factorint(n).values()) # _Chai Wah Wu_, Aug 31 2022

%Y Cf. A052410, A005361, A051903, A072411-A072414, A124010, A075802, A072776, A270492.

%Y Apart from the initial term essentially the same as A253641.

%Y Differs from A051904 for the first time at n=72, where a(72) = 1, while A051904(72) = 2.

%Y Differs from A158378 for the first time at n=10800, where a(10800) = 1, while A158378(10800) = 2.

%Y Cf. A000005, A000961, A001597, A052410, A303386, A327501.

%K nonn

%O 1,4

%A _Eric W. Weisstein_

%E More terms from _Labos Elemer_, Jun 17 2002