login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A264440
Row lengths of the irregular triangle A137510 (number of divisors d of n with 1 < d < n, or 0 if no such d exists).
2
1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 6, 1, 2, 2, 4, 1, 6, 1, 4, 2, 2, 2, 7, 1, 2, 2, 6, 1, 6, 1, 4, 4, 2, 1, 8, 1, 4, 2, 4, 1, 6, 2, 6, 2, 2, 1, 10, 1, 2, 4, 5, 2, 6, 1, 4, 2, 6, 1, 10, 1, 2, 4, 4, 2, 6, 1, 8, 3, 2, 1, 10, 2, 2
OFFSET
1,6
COMMENTS
See A032741 for the number of divisors d of n with 1 <= d < n, n >= 1.
See A070824 for the number of the divisors d of n with 1 < d < n, n >= 1.
LINKS
FORMULA
a(1) = 1; a(n) = 1 if n is prime, otherwise a(n) = A070824(n).
a(1) = 1; a(n) = 1 if n is prime, otherwise a(n) = A032741(n) - 1.
a(n) = max(1, A000005(n)-2). - Robert Israel, Jan 20 2016
MAPLE
seq(max(1, numtheory:-tau(n)-2), n=1..100); # Robert Israel, Jan 20 2016
MATHEMATICA
Array[DivisorSigma[0, #] - 2 &, {80}] /. n_ /; n < 2 -> 1 (* Michael De Vlieger, Jan 16 2016 *)
PROG
(PARI) A264440(n) = max(1, numdiv(n)-2); \\ After Robert Israel's formula. - Antti Karttunen, May 25 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jan 16 2016
STATUS
approved