login
A264443
a(n) = n*(n + 5)*(n + 10)/6.
7
0, 11, 28, 52, 84, 125, 176, 238, 312, 399, 500, 616, 748, 897, 1064, 1250, 1456, 1683, 1932, 2204, 2500, 2821, 3168, 3542, 3944, 4375, 4836, 5328, 5852, 6409, 7000, 7626, 8288, 8987, 9724, 10500, 11316, 12173, 13072, 14014, 15000
OFFSET
0,2
COMMENTS
It is well-known, and easy to prove, that the product of 3 consecutive integers n*(n + 1)*(n + 2) is divisible by 6. It can be shown that the product of 3 integers in arithmetic progression n*(n + r)*(n + 2*r) is divisible by 6 if and only if r is not divisible by 2 or 3 (see A007310 for these numbers). This is the case r = 5.
FORMULA
O.g.f.: x*(6*x^2 - 16*x + 11)/(1 - x)^4.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>3. - Vincenzo Librandi, Nov 16 2015
MAPLE
seq( n*(n + 5)*(n + 10)/6, n = 1..40 );
MATHEMATICA
Table[n (n + 5) (n + 10)/6, {n, 0, 40}] (* Vincenzo Librandi, Nov 16 2015 *)
PROG
(PARI) vector(100, n, n--; n*(n+5)*(n+10)/6) \\ Altug Alkan, Nov 15 2015
(Magma) [n*(n+5)*(n+10)/6: n in [0..40]]; // Vincenzo Librandi, Nov 16 2015
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Nov 13 2015
STATUS
approved