login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364893
a(n) is the minimal positive value of m such that A325433(2m, 2n+1) > A364891(2m, 2n+1).
2
11, 28, 54, 88, 129, 179, 237, 303, 376, 458, 548, 646, 752, 866, 988, 1118, 1256, 1402, 1558, 1719, 1889, 2067, 2253, 2447, 2650, 2860, 3078, 3304, 3539, 3781, 4031, 4289, 4556, 4830, 5112, 5403, 5701, 6007, 6332, 6644, 6975, 7313, 7659, 8014, 8376, 8747, 9125
OFFSET
1,1
LINKS
K. Banerjee and M. G. Dastidar, Inequalities for the partition function arising from truncated theta series, RISC Report Series No. 22-20, 2023.
FORMULA
Empirical: a(n) ~ A364894(n). (See p. 5 in Banerjee and Dastidar.)
MATHEMATICA
A325433[n_, k_]:=(-1)^(k-1)*Sum[(-1)^j*(PartitionsP[n-j*(3*j+1)/2]-PartitionsP[n-j*(3*j+5)/2-1]), {j, 0, k-1}];
A364891[n_, k_]:=(-1)^(k-1)*Sum[(-1)^j*(PartitionsP[n-j(2j+1)]-PartitionsP[n-(j+1)(2j+1)]), {j, 0, k-1}];
nmax=47; a={}; For[n=1, n<=nmax, n++, m=1; While[A325433[2m, 2n+1]<=A364891[2m, 2n+1], m++]; AppendTo[a, m]]; a
CROSSREFS
KEYWORD
nonn
AUTHOR
Stefano Spezia, Aug 12 2023
STATUS
approved