login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A264449
a(n) = n*(n + 7)*(n + 14)*(n + 21)*(n + 28)/120.
7
0, 638, 1656, 3162, 5280, 8151, 11934, 16807, 22968, 30636, 40052, 51480, 65208, 81549, 100842, 123453, 149776, 180234, 215280, 255398, 301104, 352947, 411510, 477411, 551304, 633880, 725868, 828036, 941192, 1066185, 1203906, 1355289, 1521312, 1702998, 1901416, 2117682
OFFSET
0,2
COMMENTS
It is well-known, and easy to prove, that the product of 5 consecutive integers n*(n + 1)*(n + 2)*(n + 3)*(n + 4) is divisible by 5!. It can be shown that the product of 5 integers in arithmetic progression n*(n + r)*(n + 2*r)*(n + 3*r)*(n + 4*r) is divisible by 5! if and only if r is not divisible by 2, 3 or 5 (see A007775 for these numbers). This is the case r = 7.
FORMULA
O.g.f.: x*(351*x^4 - 1612*x^3 + 2796*x^2 - 2172*x + 638)/(1 - x)^6.
a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6), for n>5. - Vincenzo Librandi, Nov 16 2015
MAPLE
seq( n*(n + 7)*(n + 14)*(n + 21)*(n + 28)/120, n = 0..35 );
MATHEMATICA
Table[n (n + 7) (n + 14) (n + 21) (n + 28)/120, {n, 0, 40}] (* Vincenzo Librandi, Nov 16 2015 *)
PROG
(PARI) vector(100, n, n--; n*(n+7)*(n+14)*(n+21)*(n+28)/120) \\ Altug Alkan, Nov 15 2015
(Magma) [n*(n+7)*(n+14)*(n+21)*(n+28)/120: n in [0..40]]; // Vincenzo Librandi, Nov 16 2015
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Nov 13 2015
STATUS
approved