login
A360183
Centered heptagonal numbers which are sphenic numbers.
1
638, 4922, 6322, 11978, 15478, 16906, 19426, 21022, 23822, 25586, 28666, 35351, 39698, 48322, 53383, 55126, 70078, 80333, 83546, 92422, 98197, 105358, 107801, 132406, 147806, 156563, 162541, 171718, 182743, 209231, 210946, 233878, 248578, 263726, 269522, 281303
OFFSET
1,1
LINKS
EXAMPLE
A069099(14) = 638 = (7*14^2 - 7*14 + 2)/2 = 2 * 11 * 29.
A069099(38) = 4922 = (7*38^2 - 7*38 + 2)/2 = 2 * 23 * 107.
A069099(43) = 6322 = (7*43^2 - 7*43 + 2)/2 = 2 * 29 * 109.
MAPLE
select(t -> ifactors(t)[2][.., 2]=[1, 1, 1], [(7*i^2-7*i+2)/2 $ i=1..1000]); # Robert Israel, Feb 28 2023
MATHEMATICA
Select[Table[(7*n^2 - 7*n + 2)/2, {n, 1, 300}], FactorInteger[#][[;; , 2]] == {1, 1, 1} &] (* Amiram Eldar, Jan 29 2023 *)
CROSSREFS
Intersection of A069099 and A007304.
Sequence in context: A212399 A264449 A210883 * A281884 A200710 A250661
KEYWORD
nonn
AUTHOR
Massimo Kofler, Jan 29 2023
STATUS
approved