OFFSET
0,2
COMMENTS
In general, if h>=1 and g.f. = Product_{k>=1} ((1 + (h*x)^k)/(1 - (h*x)^k))^(1/h), then a(n) ~ h^n * exp(Pi*sqrt(n/h)) /(2^(3/2 + 3/(2*h)) * h^(1/4 + 1/(4*h)) * n^(3/4 + 1/(4*h))). - Vaclav Kotesovec, Apr 23 2018
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1000
FORMULA
a(n) ~ 2^(3*n - 81/32) * exp(sqrt(n)*Pi/2^(3/2)) / n^(25/32). - Vaclav Kotesovec, Apr 23 2018
MAPLE
seq(coeff(series(mul(((1+(8*x)^k)/(1-(8*x)^k))^(1/8), k = 1..n), x, n+1), x, n), n = 0..25); # Muniru A Asiru, Apr 23 2018
MATHEMATICA
nmax = 20; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(1/8), {k, 1, nmax}], {x, 0, nmax}], x] * 8^Range[0, nmax] (* Vaclav Kotesovec, Apr 23 2018 *)
PROG
(PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, ((1+(8*x)^k)/(1-(8*x)^k))^(1/8)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 22 2018
STATUS
approved