The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A303307 Expansion of Product_{n>=1} ((1 + (2*x)^n)/(1 - (2*x)^n))^(1/2). 8
 1, 2, 6, 20, 54, 156, 444, 1192, 3174, 8620, 22516, 58392, 151996, 387352, 984888, 2507088, 6270854, 15659724, 39067588, 96454072, 237663444, 584266696, 1425921992, 3470869296, 8431325916, 20380759544, 49122457608, 118178637040, 283150466232, 676768288176 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..3000 FORMULA a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} 2^(k-1) * A054785(k) * a(n-k) for n > 0. a(n) ~ 2^(n - 21/8) * exp(Pi*sqrt(n/2)) / n^(7/8). - Vaclav Kotesovec, Apr 21 2018 MATHEMATICA CoefficientList[Series[Sqrt[QPochhammer[-1, 2*x] / (2*QPochhammer[2*x])], {x, 0, 30}], x] (* Vaclav Kotesovec, Apr 21 2018 *) PROG (Ruby) def s(n)   s = 0   (1..n).each{|i| s += i if n % i == 0}   s end def A303307(n)   ary = [1]   a = (0..n).map{|i| 2 ** (i - 1) * (s(2 * i) - s(i))}   (1..n).each{|i| ary << (1..i).inject(0){|s, j| s + a[j] * ary[-j]} / i}   ary end p A303307(100) CROSSREFS Cf. A054785, A303306, A303342. Sequence in context: A066397 A060344 A045655 * A321192 A327414 A110295 Adjacent sequences:  A303304 A303305 A303306 * A303308 A303309 A303310 KEYWORD nonn AUTHOR Seiichi Manyama, Apr 21 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 24 22:09 EST 2021. Contains 340414 sequences. (Running on oeis4.)