login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A303307 Expansion of Product_{n>=1} ((1 + (2*x)^n)/(1 - (2*x)^n))^(1/2). 8

%I

%S 1,2,6,20,54,156,444,1192,3174,8620,22516,58392,151996,387352,984888,

%T 2507088,6270854,15659724,39067588,96454072,237663444,584266696,

%U 1425921992,3470869296,8431325916,20380759544,49122457608,118178637040,283150466232,676768288176

%N Expansion of Product_{n>=1} ((1 + (2*x)^n)/(1 - (2*x)^n))^(1/2).

%H Seiichi Manyama, <a href="/A303307/b303307.txt">Table of n, a(n) for n = 0..3000</a>

%F a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} 2^(k-1) * A054785(k) * a(n-k) for n > 0.

%F a(n) ~ 2^(n - 21/8) * exp(Pi*sqrt(n/2)) / n^(7/8). - _Vaclav Kotesovec_, Apr 21 2018

%t CoefficientList[Series[Sqrt[QPochhammer[-1, 2*x] / (2*QPochhammer[2*x])], {x, 0, 30}], x] (* _Vaclav Kotesovec_, Apr 21 2018 *)

%o (Ruby)

%o def s(n)

%o s = 0

%o (1..n).each{|i| s += i if n % i == 0}

%o s

%o end

%o def A303307(n)

%o ary = [1]

%o a = (0..n).map{|i| 2 ** (i - 1) * (s(2 * i) - s(i))}

%o (1..n).each{|i| ary << (1..i).inject(0){|s, j| s + a[j] * ary[-j]} / i}

%o ary

%o end

%o p A303307(100)

%Y Cf. A054785, A303306, A303342.

%K nonn

%O 0,2

%A _Seiichi Manyama_, Apr 21 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 7 13:15 EST 2021. Contains 341886 sequences. (Running on oeis4.)