login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A347582
Number of length-2n binary strings of the form xxyy.
1
2, 6, 20, 54, 146, 346, 848, 1922, 4424, 9810, 21816, 47598, 103730, 223498, 480542, 1025956, 2184362, 4629670, 9786512, 20618936, 43340862, 90870526, 190141128, 397049128, 827675318
OFFSET
1,1
FORMULA
A347583(n) <= a(n) <= A347583(n) + 2^n. - Michael S. Branicky, Jan 23 2022
EXAMPLE
a(2) = 6: {0000, 0011, 0101, 1010, 1100, 1111}.
PROG
(Python)
from itertools import product
from functools import cache
@cache
def b(n): # length-2n binary strings of the form ww
return set(w+w for w in product(b"01", repeat=n))
def a(n):
return len(set(s+t for i in range(n) for s in b(i) for t in b(n-i)))
print([a(n) for n in range(1, 18)]) # Michael S. Branicky, Jan 23 2022
(Python) # bit-based version
from itertools import product
def b(n): # length-2n binary strings of the form ww
if n == 0: yield 0
for i in range(2**n):
yield (i << n) + i
def a(n):
st = set()
for i in range(n):
for w in b(i):
s = w << (2*(n-i))
for t in b(n-i):
st.add(s+t)
return len(st)
print([a(n) for n in range(1, 20)]) # Michael S. Branicky, Jan 25 2022
CROSSREFS
Cf. A347583, which requires x and y to be nonempty.
Sequence in context: A066397 A060344 A363600 * A045655 A303307 A321192
KEYWORD
nonn,more
AUTHOR
Jeffrey Shallit, Jan 23 2022
EXTENSIONS
a(18)-a(21) from Michael S. Branicky, Jan 23 2022
a(22)-a(25) from Michael S. Branicky, Jan 25 2022
STATUS
approved