Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Apr 23 2018 18:54:40
%S 1,2,4,50,98,1830,4576,83950,236500,4211766,12903260,222377926,
%T 723722602,12136867530,41382435824,678060771778,2400028798290,
%U 38546050682278,140724756748476,2220907298526934,8323586858891766,129340015891714962,495838256186203600
%N Expansion of Product_{n>=1} ((1 + 8*x^n)/(1 - 8*x^n))^(1/8).
%H Seiichi Manyama, <a href="/A303382/b303382.txt">Table of n, a(n) for n = 0..1000</a>
%F a(n) ~ c * 8^n / n^(7/8), where c = (QPochhammer[-1, 1/8] / QPochhammer[1/8])^(1/8) / Gamma(1/8) = 0.15003359366795844474467456149... - _Vaclav Kotesovec_, Apr 23 2018
%p seq(coeff(series(mul(((1+8*x^k)/(1-8*x^k))^(1/8), k = 1..n), x, n+1), x, n), n=0..25); # _Muniru A Asiru_, Apr 23 2018
%t nmax = 25; CoefficientList[Series[Product[((1 + 8*x^k)/(1 - 8*x^k))^(1/8), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Apr 23 2018 *)
%t nmax = 30; CoefficientList[Series[(-7*QPochhammer[-8, x] / (9*QPochhammer[8, x]))^(1/8), {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Apr 23 2018 *)
%o (PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, ((1+8*x^k)/(1-8*x^k))^(1/8)))
%Y Expansion of Product_{n>=1} ((1 + 2^b*x^n)/(1 - 2^b*x^n))^(1/(2^b)): A015128 (b=0), A303346 (b=1), A303360 (b=2), this sequence (b=3).
%Y Cf. A303381.
%K nonn
%O 0,2
%A _Seiichi Manyama_, Apr 22 2018