%I #17 Aug 01 2015 10:41:45
%S 1,1,2,3,5,8,13,21,34,55,88,142,229,369,595,959,1546,2492,4017,6475,
%T 10438,16826,27123,43722,70479,113611,183139,295217,475885,767119,
%U 1236583,1993351,3213249,5179704,8349597,13459412,21696349,34974155,56377758,90880011
%N Expansion of 1/(1 - x - x^2 + x^10 - x^12).
%C Limiting ratio is 1.61198..., the largest real root of -1 + x^2 - x^10 - x^11 + x^12 = 0.
%H Vincenzo Librandi, <a href="/A225396/b225396.txt">Table of n, a(n) for n = 0..1000</a>
%H Roger L. Bagula, <a href="/A225396/a225396.txt">Demo file</a>
%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (1, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1).
%F a(0)=1, a(1)=1, a(2)=2, a(3)=3, a(4)=5, a(5)=8, a(6)=13, a(7)=21, a(8)=34, a(9)=55, a(10)=88, a(11)=142, a(n)=a(n-1)+a(n-2)- a(n-10)+ a(n-12). - _Harvey P. Dale_, Apr 12 2014
%t CoefficientList[Series[1/(1 - x - x^2 + x^10 - x^12), {x, 0, 50}], x]
%t LinearRecurrence[{1,1,0,0,0,0,0,0,0,-1,0,1},{1,1,2,3,5,8,13,21,34,55,88,142},50] (* _Harvey P. Dale_, Apr 12 2014 *)
%Y Cf. A117791, A107293, A204631, A225393, A225394, A029826, A147660.
%K nonn,easy
%O 0,3
%A _Roger L. Bagula_, May 06 2013