login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346467
a(n) is the least common multiple of the divisors d of n-1 such that d+1 is prime; a(1) = 1.
6
1, 1, 2, 1, 4, 1, 6, 1, 4, 1, 10, 1, 12, 1, 2, 1, 16, 1, 18, 1, 20, 1, 22, 1, 12, 1, 2, 1, 28, 1, 30, 1, 16, 1, 2, 1, 36, 1, 2, 1, 40, 1, 42, 1, 44, 1, 46, 1, 48, 1, 10, 1, 52, 1, 18, 1, 28, 1, 58, 1, 60, 1, 2, 1, 16, 1, 66, 1, 4, 1, 70, 1, 72, 1, 2, 1, 4, 1, 78, 1, 80, 1, 82, 1, 84, 1, 2, 1, 88, 1, 90, 1, 92, 1, 2, 1, 96
OFFSET
1,3
COMMENTS
Original definition: a(n) is the least common multiple of p-1 computed over all primes p for which p-1 is a divisor of n-1; a(1) = 1.
LINKS
FORMULA
a(n) = A002322(A027642(n-1)).
a(n) = A346466(n) * A346481(n).
For n > 1, a(n) = (n-1) / A346468(n).
a(n) = LCM { d | n-1; d+1 is prime }, where "|" means "divides". - M. F. Hasler, Nov 23 2021
MAPLE
f:= proc(n)
if n::even then return 1 fi;
ilcm(op(select(d -> isprime(d+1), numtheory:-divisors(n-1))));
end proc:
f(1):= 1:
map(f, [$1..200]); # Robert Israel, Aug 30 2021
MATHEMATICA
{1}~Join~Array[CarmichaelLambda@ Denominator@ BernoulliB@ # &, 96] (* Michael De Vlieger, Jul 22 2021 *)
PROG
(PARI) A346467(n) = if(1==n, n, my(m=1); fordiv(n-1, d, if(isprime(1+d), m = lcm(m, d))); (m));
(PARI) apply( {A346467(n)=if(n>1, lcm([d|d<-divisors(n-1), isprime(d+1)]), 1)}, [1..99]) \\ M. F. Hasler, Nov 23 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved