login
A329638
Sum of A329644(d) for all such divisors d of n for which that value is positive. Here A329644 is the Möbius transform of A323244, the deficiency of A156552(n).
7
0, 1, 1, 2, 1, 4, 1, 6, 1, 5, 1, 10, 1, 16, 2, 6, 1, 13, 1, 18, 2, 18, 1, 22, 1, 46, 5, 22, 1, 10, 1, 30, 14, 82, 2, 19, 1, 256, 2, 22, 1, 41, 1, 66, 9, 226, 1, 46, 1, 24, 8, 130, 1, 29, 2, 70, 2, 748, 1, 42, 1, 1362, 22, 30, 10, 42, 1, 214, 254, 44, 1, 43, 1, 3838, 15, 406, 2, 120, 1, 78, 5, 5458, 1, 52, 2, 12250, 2, 70, 1, 26, 2, 934
OFFSET
1,4
FORMULA
a(n) = Sum_{d|n} [A329644(d) > 0] * A329644(d), where [ ] is Iverson bracket.
a(n) = A323244(n) + A329639(n).
PROG
(PARI)
A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
A323243(n) = if(1==n, 0, sigma(A156552(n)));
A324543(n) = sumdiv(n, d, moebius(n/d)*A323243(d));
A297113(n) = if(1==n, 0, (primepi(vecmax(factor(n)[, 1])) + (bigomega(n)-omega(n))));
A329644(n) = if(1==n, 0, 2^A297113(n) - A324543(n));
A329638(n) = sumdiv(n, d, if((d=A329644(d))>0, d, 0));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 21 2019
STATUS
approved