login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A329641 a(n) = gcd(A329638(n), A329639(n)). 5
0, 1, 1, 2, 1, 4, 1, 6, 1, 5, 1, 10, 1, 16, 2, 6, 1, 1, 1, 18, 1, 18, 1, 22, 1, 46, 1, 22, 1, 10, 1, 30, 14, 82, 2, 1, 1, 256, 2, 22, 1, 1, 1, 66, 1, 226, 1, 46, 1, 1, 8, 130, 1, 1, 1, 70, 2, 748, 1, 42, 1, 1362, 2, 2, 10, 42, 1, 214, 254, 4, 1, 1, 1, 3838, 5, 406, 2, 2, 1, 78, 1, 5458, 1, 26, 2, 12250, 2, 10, 1, 2, 1, 934 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..10000 (based on Hans Havermann's factorization of A156552)

Index entries for sequences related to binary expansion of n

Index entries for sequences computed from indices in prime factorization

Index entries for sequences related to sigma(n)

FORMULA

a(n) = gcd(A329638(n), A329639(n)).

a(A324201(n)) = A329610(n).

PROG

(PARI)

A323243(n) = if(1==n, 0, sigma(A156552(n)));

A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552

A329644(n) = sumdiv(n, d, moebius(n/d)*((2*A156552(d))-A323243(d)));

A329641(n) = { my(t=0, u=0); fordiv(n, d, if((d=A329644(d))>0, t +=d, u -= d)); gcd(u, t); };

CROSSREFS

Cf. A156552, A323243, A324201, A329610, A329638, A329639, A329640, A329644.

Sequence in context: A257022 A214721 A324384 * A329638 A322036 A318441

Adjacent sequences:  A329638 A329639 A329640 * A329642 A329643 A329644

KEYWORD

nonn

AUTHOR

Antti Karttunen, Nov 22 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 31 13:01 EDT 2020. Contains 334748 sequences. (Running on oeis4.)