login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A324201
a(n) = A062457(A000043(n)) = prime(A000043(n))^A000043(n), where A000043 gives the exponent of the n-th Mersenne prime.
28
9, 125, 161051, 410338673, 925103102315013629321, 1271991467017507741703714391419, 49593099428404263766544428188098203, 165163983801975082169196428118414326197216835208154294976154161023
OFFSET
1,1
COMMENTS
If there are no odd perfect numbers, then the terms give all solutions n > 1 to A323244(n) = 0.
Conversely, if these are all numbers k > 1 that satisfy A323244(k) = 0 (which can be proved if one can show, for example, that no number in A007916 can satisfy the equation), then no odd perfect numbers exist. See also A336700. - Antti Karttunen, Jan 12 2024
LINKS
FORMULA
a(n) = A062457(A000043(n)).
A323244(a(n)) = 0.
a(n) = A005940(1+A000396(n)). [Provided no odd perfect numbers exist]
MATHEMATICA
Prime[#]^#&/@MersennePrimeExponent[Range[8]] (* Harvey P. Dale, Mar 15 2024 *)
CROSSREFS
Subsequence of A001597.
Cf. also A336700, A368989.
Sequence in context: A192724 A078422 A291897 * A224495 A064199 A092343
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 18 2019
STATUS
approved