login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A346465 Numbers k such that (4^k - 2)*(4^k - 1)/Clausen(2*k, 1) is not squarefree, where Clausen(n, m) = A160014(n, m). 1
9, 11, 18, 27, 32, 36, 45, 50, 53, 54, 63, 68, 72, 74, 78, 81, 90, 95, 99, 100, 108, 116, 117, 126, 127, 135, 137, 144, 147, 150, 153, 155, 158, 162, 171, 179, 180, 182, 189, 198, 200, 204, 207, 216, 221, 225, 233, 234, 242, 243, 250, 252, 261, 263, 270, 279 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Also numbers k such that 6*GaussBinomial(2*k, 2, 2)/denominator(Bernoulli(2*k, 1)) is not squarefree.

LINKS

Table of n, a(n) for n=1..56.

FORMULA

The positive multiples of 9 form a subsequence.

k is a term if and only if A346463(k) > A007947(A346463(k)).

MAPLE

with(NumberTheory): isa := n -> not IsSquareFree(((4^n - 2)*(4^n - 1))/

mul(i, i = select(isprime, map(i -> i+1, Divisors(2*n))))):

select(isa, [$(1..100)]);

MATHEMATICA

q[n_] := Product[k, {k, Select[Table[d + 1, {d, Divisors[2 n]}], PrimeQ]}];

isA[n_] := ! SquareFreeQ[((4^n - 2) (4^n -1)) / q[n]];

Select[Range[50],  isA]

CROSSREFS

Cf. A006095, A002445, A007947, A160014, A346463, A346464.

Sequence in context: A339048 A137018 A182391 * A263722 A299971 A090771

Adjacent sequences:  A346462 A346463 A346464 * A346466 A346467 A346468

KEYWORD

nonn

AUTHOR

Peter Luschny, Jul 20 2021

EXTENSIONS

More terms from Jinyuan Wang, Jul 23 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 05:36 EDT 2021. Contains 348160 sequences. (Running on oeis4.)