login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that (4^k - 2)*(4^k - 1)/Clausen(2*k, 1) is not squarefree, where Clausen(n, m) = A160014(n, m).
1

%I #17 Oct 05 2021 20:24:48

%S 9,11,18,27,32,36,45,50,53,54,63,68,72,74,78,81,90,95,99,100,108,116,

%T 117,126,127,135,137,144,147,150,153,155,158,162,171,179,180,182,189,

%U 198,200,204,207,216,221,225,233,234,242,243,250,252,261,263,270,279

%N Numbers k such that (4^k - 2)*(4^k - 1)/Clausen(2*k, 1) is not squarefree, where Clausen(n, m) = A160014(n, m).

%C Also numbers k such that 6*GaussBinomial(2*k, 2, 2)/denominator(Bernoulli(2*k, 1)) is not squarefree.

%F The positive multiples of 9 form a subsequence.

%F k is a term if and only if A346463(k) > A007947(A346463(k)).

%p with(NumberTheory): isa := n -> not IsSquareFree(((4^n - 2)*(4^n - 1))/

%p mul(i, i = select(isprime, map(i -> i+1, Divisors(2*n))))):

%p select(isa, [$(1..100)]);

%t q[n_] := Product[k, {k, Select[Table[d + 1, {d, Divisors[2 n]}], PrimeQ]}];

%t isA[n_] := ! SquareFreeQ[((4^n - 2) (4^n -1)) / q[n]];

%t Select[Range[50], isA]

%Y Cf. A006095, A002445, A007947, A160014, A346463, A346464.

%K nonn

%O 1,1

%A _Peter Luschny_, Jul 20 2021

%E More terms from _Jinyuan Wang_, Jul 23 2021