OFFSET
0,5
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..16382
EXAMPLE
Triangle begins:
1;
1, 1;
1, 2, 1, 2;
1, 3, 4, 6, 1, 3, 4, 6;
1, 4, 8, 14, 15, 18, 22, 28, 1, 4, 8, 14, 15, 18, 22, 28;
1, 5, 13, 27, 42, 60, 82, 110, 111, 115, 123, 137, 152, 170, 192, 220, 1, 5, 13, 27, 42, 60, 82, 110, 111, 115, 123, 137, 152, 170, 192, 220;
1, 6, 19, 46, 88, 148, 230, 340, 451, 566, 689, 826, 978, 1148, 1340, 1560, 1561, 1566, 1579, 1606, 1648, 1708, 1790, 1900, 2011, 2126, 2249, 2386, 2538, 2708, 2900, 3120, 1, 6, 19, 46, 88, 148, 230, 340, 451, 566, 689, 826, 978, 1148, 1340, 1560, 1561, 1566, 1579, 1606, 1648, 1708, 1790, 1900, 2011, 2126, 2249, 2386, 2538, 2708, 2900, 3120; ...
Illustration of generating method.
Given row 2: [1, 2, 1, 2],
take partial sums: [1, 3, 4, 6],
then concatenate with itself to form row 3:
[1, 3, 4, 6, 1, 3, 4, 6].
Continuing in this way will generate all the rows of the triangle.
The final terms in each row form sequence A256599:
[1, 1, 2, 6, 28, 220, 3120, 83664, 4357344, 447134112, 91076016768, ...].
PROG
(PARI) {A=[1]; for(n=1, 8, print(A); A=concat(Vec(Ser(A)/(1-x)), Vec(Ser(A)/(1-x))); )}
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Paul D. Hanna, Apr 03 2015
STATUS
approved