login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053177
Odd composite k such that (k-1)/2 is prime.
4
15, 27, 35, 39, 63, 75, 87, 95, 119, 123, 135, 143, 147, 159, 195, 203, 207, 215, 219, 255, 275, 279, 299, 303, 315, 327, 335, 363, 387, 395, 399, 423, 447, 455, 459, 483, 515, 527, 539, 543, 555, 567, 615, 623, 627, 635, 663, 675, 695, 699, 707, 735, 747
OFFSET
1,1
COMMENTS
Composite numbers produced in A053176.
LINKS
R. P. Boas & N. J. A. Sloane, Correspondence, 1974
FORMULA
From the composite, subtract 1, divide by 2 and result is a prime.
EXAMPLE
a(3)=35 and 35-1=34, 34/2=17, prime.
MATHEMATICA
Select[2 Prime@ Range@ 74 + 1, CompositeQ] (* Michael De Vlieger, Jul 13 2015 *)
Select[Range[1, 801, 2], CompositeQ[#]&&PrimeQ[(#-1)/2]&] (* Harvey P. Dale, Apr 01 2019 *)
PROG
(PARI) main(size)={my(v=vector(size), i, t=1); for(i=1, size, while(isprime(2*prime(t)+1), t++); v[i]=2*prime(t)+1; t++; ); return(v)} /* Anders Hellström, Jul 13 2015 */
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Enoch Haga, Feb 29 2000
EXTENSIONS
Definition clarified by Peter Munn, Oct 26 2017
STATUS
approved