OFFSET
1,1
COMMENTS
For k >= 3, 2^k*(2^(k-2)-1) is in the sequence if and only if 2^(k-1)-1 and 2^(k-2)-1 are squarefree. So if m is a term, m+1=2^(k-1)-1 is a squarefree number squared. - Lambert Herrgesell (zero815(AT)googlemail.com), Feb 18 2007
REFERENCES
J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 48, p. 18, Ellipses, Paris 2008.
EXAMPLE
48 = 2^4*3 is in the sequence because it is not squarefree, its squarefree kernel is 6 and the squarefree kernel of 49 = 7^2 is 7.
MAPLE
with(numtheory): rad:=proc(n) local fs, c: fs:=convert(factorset(n), list): c:=nops(fs): product(fs[j], j=1..c) end: b:=proc(n) if mobius(n)=0 and rad(n+1)=rad(n)+1 then n else fi end:seq(b(n), n=1..1000); # Emeric Deutsch
PROG
(PARI) rad(n)=my(f=factor(n)[, 1]); prod(i=1, #f, f[i])
is(n)=!issquarefree(n) && rad(n+1)==rad(n)+1 \\ Charles R Greathouse IV, Aug 08 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Mar 04 2003
EXTENSIONS
a(5)-a(8) from Emeric Deutsch, Mar 29 2005
Edited and a(9) onwards supplied by Lambert Herrgesell (zero815(AT)googlemail.com), Feb 18 2007
STATUS
approved