login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081084
Nonsquarefree numbers m such that rad(m+1)=rad(m)+1, where rad(m)=A007947(m) is the squarefree kernel of m.
2
8, 48, 224, 960, 65024, 261120, 1046528, 4190208, 268402688, 1073676288, 4294836224, 17179607040, 70368727400448, 4503599493152768, 18014398241046528, 72057593501057024, 288230375077969920
OFFSET
1,1
COMMENTS
For k >= 3, 2^k*(2^(k-2)-1) is in the sequence if and only if 2^(k-1)-1 and 2^(k-2)-1 are squarefree. So if m is a term, m+1=2^(k-1)-1 is a squarefree number squared. - Lambert Herrgesell (zero815(AT)googlemail.com), Feb 18 2007
REFERENCES
J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 48, p. 18, Ellipses, Paris 2008.
EXAMPLE
48 = 2^4*3 is in the sequence because it is not squarefree, its squarefree kernel is 6 and the squarefree kernel of 49 = 7^2 is 7.
MAPLE
with(numtheory): rad:=proc(n) local fs, c: fs:=convert(factorset(n), list): c:=nops(fs): product(fs[j], j=1..c) end: b:=proc(n) if mobius(n)=0 and rad(n+1)=rad(n)+1 then n else fi end:seq(b(n), n=1..1000); # Emeric Deutsch
PROG
(PARI) rad(n)=my(f=factor(n)[, 1]); prod(i=1, #f, f[i])
is(n)=!issquarefree(n) && rad(n+1)==rad(n)+1 \\ Charles R Greathouse IV, Aug 08 2013
CROSSREFS
Sequence in context: A087914 A271061 A211012 * A230931 A073390 A069021
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Mar 04 2003
EXTENSIONS
a(5)-a(8) from Emeric Deutsch, Mar 29 2005
Edited and a(9) onwards supplied by Lambert Herrgesell (zero815(AT)googlemail.com), Feb 18 2007
STATUS
approved