login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A050165
Triangle read by rows: T(n,k) = M(2n+1,k,-1), 0 <= k <= n, n >= 0, array M as in A050144.
3
1, 1, 1, 1, 3, 2, 1, 5, 9, 5, 1, 7, 20, 28, 14, 1, 9, 35, 75, 90, 42, 1, 11, 54, 154, 275, 297, 132, 1, 13, 77, 273, 637, 1001, 1001, 429, 1, 15, 104, 440, 1260, 2548, 3640, 3432, 1430, 1, 17, 135, 663, 2244, 5508, 9996, 13260, 11934
OFFSET
0,5
COMMENTS
T is a mirror image of the array in A039599.
FORMULA
Triangle T(n, k) read by rows; given by [1, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, 1, 1, 1, 1, 1, 1, 1, ...] where DELTA is the operator defined in A084938. T(n, k) = C(2n, k)*(2n-2k+1)/(2n-k+1). - Philippe Deléham, Dec 07 2003
Sum_{k=0..min(m, n)} T(m, m-k)*T(n, n-k) = A000108(m+n); A000108: Catalan numbers. - Philippe Deléham, Dec 30 2003
T(n, k) = 0 if n < k, T(n, n)= A000108(n) and for n > k: T(n, k) = Sum_{j=0..k} T(n-1-j, k-j)*A000108(j+1). - Philippe Deléham, Feb 03 2004
T(n,k)= Sum_{j>=0} (-1)^(n-j)*A094385(n,j)*binomial(j,k). - Philippe Deléham, May 05 2007
T(2n,n) = A126596(n). - Philippe Deléham, Nov 23 2011
EXAMPLE
Triangle begins:
1;
1, 1;
1, 3, 2;
1, 5, 9, 5;
1, 7, 20, 28, 14;
1, 9, 35, 75, 90, 42;
1, 11, 54, 154, 275, 297, 132;
CROSSREFS
Sequence in context: A021912 A114597 A199479 * A330784 A198876 A033878
KEYWORD
nonn,tabl
STATUS
approved